cs.ET
74 postsarXiv:2501.08096v2 Announce Type: replace Abstract: Reinforcement Learning (RL) has shown excellent performance in solving decision-making and control problems of autonomous driving, which is increasingly applied in diverse driving scenarios. However, driving is a multi-attribute problem, leading to challenges in achieving multi-objective compatibility for current RL methods, especially in both policy execution and policy iteration. On the one hand, the common action space structure with single action type limits driving flexibility or results in large behavior fluctuations during policy execution. On the other hand, the multi-attribute weighted single reward function result in the agent's disproportionate attention to certain objectives during policy iterations. To this end, we propose a Multi-objective Ensemble-Critic reinforcement learning method with Hybrid Parametrized Action for multi-objective compatible autonomous driving. Specifically, a parameterized action space is constructed to generate hybrid driving actions, combining both abstract guidance and concrete control commands. A multi-objective critics architecture is constructed considering multiple attribute rewards, to ensure simultaneously focusing on different driving objectives. Additionally, uncertainty-based exploration strategy is introduced to help the agent faster approach viable driving policy. The experimental results in both the simulated traffic environment and the HighD dataset demonstrate that our method can achieve multi-objective compatible autonomous driving in terms of driving efficiency, action consistency, and safety. It enhances the general performance of the driving while significantly increasing training efficiency.
arXiv:2412.14029v2 Announce Type: replace-cross Abstract: In analog neuromorphic chips, designers can embed computing primitives in the intrinsic physical properties of devices and circuits, heavily reducing device count and energy consumption, and enabling high parallelism, because all devices are computing simultaneously. Neural network parameters can be stored in local analog non-volatile memories (NVMs), saving the energy required to move data between memory and logic. However, the main drawback of analog sub-threshold electronic circuits is their dramatic temperature sensitivity. In this paper, we demonstrate that a temperature compensation mechanism can be devised to solve this problem. We have designed and fabricated a chip implementing a two-layer analog neural network trained to classify low-resolution images of handwritten digits with a low-cost single-poly complementary metal-oxide-semiconductor (CMOS) process, using unconventional analog NVMs for weight storage. We demonstrate a temperature-resilient analog neuromorphic chip for image recognition operating between 10$^{\circ}$C and 60$^{\circ}$C without loss of classification accuracy, within 2\% of the corresponding software-based neural network in the whole temperature range.
arXiv:2503.09874v1 Announce Type: new Abstract: Studying collaborative behavior in Mixed Reality (MR) often requires extensive, challenging data collection. This paper introduces MoCoMR, a novel simulator designed to address this by generating synthetic yet realistic collaborative MR data. MoCoMR captures individual behavioral modalities such as speaking, gaze, and locomotion during a collaborative image-sorting task with 48 participants to identify distinct behavioral patterns. MoCoMR simulates individual actions and interactions within a virtual space, enabling researchers to investigate the impact of individual behaviors on group dynamics and task performance. This simulator facilitates the development of more effective and human-centered MR applications by providing insights into user behavior and interaction patterns. The simulator's API allows for flexible configuration and data analysis, enabling researchers to explore various scenarios and generate valuable insights for optimizing collaborative MR experiences.
arXiv:2503.08725v2 Announce Type: replace Abstract: As artificial intelligence transforms public sector operations, governments struggle to integrate technological innovations into coherent systems for effective service delivery. This paper introduces the Algorithmic State Architecture (ASA), a novel four-layer framework conceptualising how Digital Public Infrastructure, Data-for-Policy, Algorithmic Government/Governance, and GovTech interact as an integrated system in AI-enabled states. Unlike approaches that treat these as parallel developments, ASA positions them as interdependent layers with specific enabling relationships and feedback mechanisms. Through comparative analysis of implementations in Estonia, Singapore, India, and the UK, we demonstrate how foundational digital infrastructure enables systematic data collection, which powers algorithmic decision-making processes, ultimately manifesting in user-facing services. Our analysis reveals that successful implementations require balanced development across all layers, with particular attention to integration mechanisms between them. The framework contributes to both theory and practice by bridging previously disconnected domains of digital government research, identifying critical dependencies that influence implementation success, and providing a structured approach for analysing the maturity and development pathways of AI-enabled government systems.
arXiv:2503.09956v1 Announce Type: new Abstract: Reinforcement learning (RL)-based large language models (LLMs), such as ChatGPT, DeepSeek, and Grok-3, have gained significant attention for their exceptional capabilities in natural language processing and multimodal data understanding. Meanwhile, the rapid expansion of information services has driven the growing need for intelligence, efficient, and adaptable wireless networks. Wireless networks require the empowerment of RL-based LLMs while these models also benefit from wireless networks to broaden their application scenarios. Specifically, RL-based LLMs can enhance wireless communication systems through intelligent resource allocation, adaptive network optimization, and real-time decision-making. Conversely, wireless networks provide a vital infrastructure for the efficient training, deployment, and distributed inference of RL-based LLMs, especially in decentralized and edge computing environments. This mutual empowerment highlights the need for a deeper exploration of the interplay between these two domains. We first review recent advancements in wireless communications, highlighting the associated challenges and potential solutions. We then discuss the progress of RL-based LLMs, focusing on key technologies for LLM training, challenges, and potential solutions. Subsequently, we explore the mutual empowerment between these two fields, highlighting key motivations, open challenges, and potential solutions. Finally, we provide insights into future directions, applications, and their societal impact to further explore this intersection, paving the way for next-generation intelligent communication systems. Overall, this survey provides a comprehensive overview of the relationship between RL-based LLMs and wireless networks, offering a vision where these domains empower each other to drive innovations.
arXiv:2503.10277v1 Announce Type: new Abstract: Bio-loggers, electronic devices used to track animal behaviour through various sensors, have become essential in wildlife research. Despite continuous improvements in their capabilities, bio-loggers still face significant limitations in storage, processing, and data transmission due to the constraints of size and weight, which are necessary to avoid disturbing the animals. This study aims to explore how selective data transmission, guided by machine learning, can reduce the energy consumption of bio-loggers, thereby extending their operational lifespan without requiring hardware modifications.
arXiv:2503.10302v1 Announce Type: cross Abstract: Recent demonstrations on specialized benchmarks have reignited excitement for quantum computers, yet whether they can deliver an advantage for practical real-world problems remains an open question. Here, we show that probabilistic computers (p-computers) when co-designed with hardware to implement powerful Monte Carlo algorithms surpass state-of-the-art quantum annealers [\href{https://www.nature.com/articles/s41586-023-05867-2}{King et al., Nature (2023)}] in solving hard optimization problems. We focus on two key algorithms: discrete-time simulated quantum annealing (DT-SQA) and adaptive parallel tempering (APT), both applied to 3D spin glasses. For DT-SQA, we find that increasing the number of replicas improves residual energy scaling, while parallelizing fewer replicas across independent runs also achieves comparable scaling. Both strategies align with the theoretical expectations from extreme value theory. In addition, APT outperforms DT-SQA when supported by non-local isoenergetic cluster moves. Finite-size scaling analysis suggests a universal behavior that explains the superior performance of APT over both DT-SQA and quantum annealing. We show that these algorithms are readily implementable in modern hardware thanks to the mature semiconductor technology. Unlike software simulations, replicas can be monolithically housed on a single chip and a large number of spins can be updated in parallel and asynchronously, similar to a quantum annealer. We project that custom Field Programmable Gate Arrays (FPGA) or specialized chips leveraging massive parallelism can further accelerate these algorithms by orders of magnitude, while drastically improving energy efficiency. Our results challenge the notion of a practical quantum advantage in optimization and present p-computers as scalable, energy-efficient hardware for real-world optimization problems.
arXiv:2405.10280v2 Announce Type: replace Abstract: This work presents a novel flow-based molecular communication (MC) testbed using spectral sensing and ink intensity estimation to enable real-time multi-molecule (MUMO) transmission. MUMO communication opens up crucial opportunities for increased throughput as well as implementing more complex coding, modulation, and resource allocation strategies for MC testbeds. An estimator using non-invasive spectral sensing at the receiver is proposed based on a simple absorption model. We conduct in-depth channel impulse response (CIR) measurements and a preliminary communication performance evaluation. Additionally, a simple analytical model is used to check the consistency of the CIRs. The results indicate that by utilizing MUMO transmission, on-off-keying, and a simple difference detector, the testbed can achieve up to 3 bits per second for near-error-free communication, which is on par with comparable testbeds that utilize more sophisticated coding or detection methods. Our platform lays the ground for implementing MUMO communication and evaluating various physical layer and networking techniques based on multiple molecule types in future MC testbeds in real time.
arXiv:2503.09987v1 Announce Type: new Abstract: As human augmentation technologies evolve, the convergence of AI, robotics, and extended reality (XR) is redefining human potential -- enhancing cognition, perception, and physical abilities. However, these advancements also introduce ethical dilemmas, security risks, and concerns over loss of control. This workshop explores both the transformative potential and the unintended consequences of augmentation technologies. Bringing together experts from HCI, neuroscience, robotics, and ethics, we will examine real-world applications, emerging risks, and governance strategies for responsible augmentation. The session will feature keynote talks and interactive discussions, addressing topics such as AI-enhanced cognition, wearable robotics, neural interfaces, and XR-driven augmentation. By fostering multidisciplinary dialogue, this workshop aims to generate actionable insights for responsible innovation, proposing ethical frameworks to balance human empowerment with risk mitigation. We invite researchers, practitioners, and industry leaders to contribute their perspectives and help shape the future of human augmentation.
arXiv:2502.01129v3 Announce Type: replace Abstract: This report investigates the application of deep reinforcement learning (DRL) algorithms for dynamic resource allocation in wireless communication systems. An environment that includes a base station, multiple antennas, and user equipment is created. Using the RLlib library, various DRL algorithms such as Deep Q-Network (DQN) and Proximal Policy Optimization (PPO) are then applied. These algorithms are compared based on their ability to optimize resource allocation, focusing on the impact of different learning rates and scheduling policies. The findings demonstrate that the choice of algorithm and learning rate significantly influences system performance, with DRL providing more efficient resource allocation compared to traditional methods.
arXiv:2503.05629v1 Announce Type: new Abstract: Human Activity Recognition has gained significant attention due to its diverse applications, including ambient assisted living and remote sensing. Wearable sensor-based solutions often suffer from user discomfort and reliability issues, while video-based methods raise privacy concerns and perform poorly in low-light conditions or long ranges. This study introduces a Frequency-Modulated Continuous Wave radar-based framework for human activity recognition, leveraging a 60 GHz radar and multi-dimensional feature maps. Unlike conventional approaches that process feature maps as images, this study feeds multi-dimensional feature maps -- Range-Doppler, Range-Azimuth, and Range-Elevation -- as data vectors directly into the machine learning (SVM, MLP) and deep learning (CNN, LSTM, ConvLSTM) models, preserving the spatial and temporal structures of the data. These features were extracted from a novel dataset with seven activity classes and validated using two different validation approaches. The ConvLSTM model outperformed conventional machine learning and deep learning models, achieving an accuracy of 90.51% and an F1-score of 87.31% on cross-scene validation and an accuracy of 89.56% and an F1-score of 87.15% on leave-one-person-out cross-validation. The results highlight the approach's potential for scalable, non-intrusive, and privacy-preserving activity monitoring in real-world scenarios.
arXiv:2503.05573v1 Announce Type: new Abstract: Model-based Reinforcement Learning (MBRL) has emerged as a promising paradigm for autonomous driving, where data efficiency and robustness are critical. Yet, existing solutions often rely on carefully crafted, task specific extrinsic rewards, limiting generalization to new tasks or environments. In this paper, we propose InDRiVE (Intrinsic Disagreement based Reinforcement for Vehicle Exploration), a method that leverages purely intrinsic, disagreement based rewards within a Dreamer based MBRL framework. By training an ensemble of world models, the agent actively explores high uncertainty regions of environments without any task specific feedback. This approach yields a task agnostic latent representation, allowing for rapid zero shot or few shot fine tuning on downstream driving tasks such as lane following and collision avoidance. Experimental results in both seen and unseen environments demonstrate that InDRiVE achieves higher success rates and fewer infractions compared to DreamerV2 and DreamerV3 baselines despite using significantly fewer training steps. Our findings highlight the effectiveness of purely intrinsic exploration for learning robust vehicle control behaviors, paving the way for more scalable and adaptable autonomous driving systems.
arXiv:2503.05571v1 Announce Type: new Abstract: The increasing integration of artificial intelligence (AI) systems in various fields requires solid concepts to ensure compliance with upcoming legislation. This paper systematically examines the compliance of AI systems with relevant legislation, focusing on the EU's AI Act and the compliance of data sets. The analysis highlighted many challenges associated with edge devices, which are increasingly being used to deploy AI applications closer and closer to the data sources. Such devices often face unique issues due to their decentralized nature and limited computing resources for implementing sophisticated compliance mechanisms. By analyzing AI implementations, the paper identifies challenges and proposes the first best practices for legal compliance when developing, deploying, and running AI. The importance of data set compliance is highlighted as a cornerstone for ensuring the trustworthiness, transparency, and explainability of AI systems, which must be aligned with ethical standards set forth in regulatory frameworks such as the AI Act. The insights gained should contribute to the ongoing discourse on the responsible development and deployment of embedded AI systems.
arXiv:2501.10376v1 Announce Type: new Abstract: In this paper, we examine the problem of information storage on memristors affected by resistive drift noise under energy constraints. We introduce a novel, fundamental trade-off between the information lifetime of memristive states and the energy that must be expended to bring the device into a particular state. We then treat the storage problem as one of communication over a noisy, energy-constrained channel, and propose a joint source-channel coding (JSCC) approach to storing images in an analogue fashion. To design an encoding scheme for natural images and to model the memristive channel, we make use of data-driven techniques from the field of deep learning for communications, namely deep joint source-channel coding (DeepJSCC), employing a generative model of resistive drift as a computationally tractable differentiable channel model for end-to-end optimisation. We introduce a modified version of generalised divisive normalisation (GDN), a biologically inspired form of normalisation, that we call conditional GDN (cGDN), allowing for conditioning on continuous channel characteristics, including the initial resistive state and the delay between storage and reading. Our results show that the delay-conditioned network is able to learn an energy-aware coding scheme that achieves a higher and more balanced reconstruction quality across a range of storage delays.
arXiv:2501.10392v1 Announce Type: new Abstract: Molecular communication (MC) is an emerging paradigm that takes inspiration from biological processes, enabling communication at the nanoscale and facilitating the development of the Internet of Bio-Nano Things (IoBNT). Traditional models of MC often rely on idealized assumptions that overlook practical challenges related to noise and signal behavior. This paper proposes and evaluates the first physical MC ion transmitter (ITX) using an ion exchange membrane. The circuit network model is used to simulate ion transport and analyze both transient and steady-state behavior. This analysis includes the effects of noise sources such as thermal and shot noise on signal integrity and SNR. The main contributions of this paper are to demonstrate how a practical MC ITX can produce a realistic waveform and to highlight future research challenges associated with a physical membrane-based ITX.
arXiv:2501.11574v1 Announce Type: new Abstract: Co-existence of 5G New Radio (5G-NR) with IoT devices is considered as a promising technique to enhance the spectral usage and efficiency of future cellular networks. In this paper, a unified framework has been proposed for allocating in-band resource blocks (RBs), i.e., within a multi-cell network, to 5G-NR users in co-existence with NB-IoT and LTE-M devices. First, a benchmark (upper-bound) scheduler has been designed for joint sub-carrier (SC) and modulation and coding scheme (MCS) allocation that maximizes instantaneous throughput and fairness among users/devices, while considering synchronous RB allocation in the neighboring cells. A series of numerical simulations with realistic ICI in an urban scenario have been used to compute benchmark upper-bound solutions for characterizing performance in terms of throughput, fairness, and delay. Next, an edge learning based multi-agent deep reinforcement learning (DRL) framework has been developed for different DRL algorithms, specifically, a policy-based gradient network (PGN), a deep Q-learning based network (DQN), and an actor-critic based deep deterministic policy gradient network (DDPGN). The proposed DRL framework depends on interference allocation, where the actions are based on inter-cell-interference (ICI) instead of power, which can bypass the need for raw data sharing and/or inter-agent communication. The numerical results reveal that the interference allocation based DRL schedulers can significantly outperform their counterparts, where the actions are based on power allocation. Further, the performance of the proposed policy-based edge learning algorithms is close to the centralized ones.
arXiv:2501.11613v1 Announce Type: new Abstract: This study introduces Conversation Routines (CR), a structured prompt engineering framework for developing task-oriented dialog systems using Large Language Models (LLMs). While LLMs demonstrate remarkable natural language understanding capabilities, engineering them to reliably execute complex business workflows remains challenging. The proposed CR framework enables the development of Conversation Agentic Systems (CAS) through natural language specifications, embedding task-oriented logic within LLM prompts. This approach provides a systematic methodology for designing and implementing complex conversational workflows while maintaining behavioral consistency. We demonstrate the framework's effectiveness through two proof of concept implementations: a Train Ticket Booking System and an Interactive Troubleshooting Copilot. These case studies validate CR's capability to encode sophisticated behavioral patterns and decision logic while preserving natural conversational flexibility. Results show that CR enables domain experts to design conversational workflows in natural language while leveraging custom enterprise functionalities (tools) developed by software engineers, creating an efficient division of responsibilities where developers focus on core API implementation and domain experts handle conversation design. While the framework shows promise in accessibility and adaptability, we identify key challenges including computational overhead, non-deterministic behavior, and domain-specific logic optimization. Future research directions include enhancing system robustness, improving scalability for complex multi-agent interactions, and addressing the identified limitations across diverse business applications.
arXiv:2501.10431v1 Announce Type: new Abstract: Principal component analysis is commonly used for dimensionality reduction, feature extraction, denoising, and visualization. The most commonly used principal component analysis method is based upon optimization of the L2-norm, however, the L2-norm is known to exaggerate the contribution of errors and outliers. When optimizing over the L1-norm, the components generated are known to exhibit robustness or resistance to outliers in the data. The L1-norm components can be solved for with a binary optimization problem. Previously, L1-BF has been used to solve the binary optimization for multiple components simultaneously. In this paper we propose QAPCA, a new method for finding principal components using quantum annealing hardware which will optimize over the robust L1-norm. The conditions required for convergence of the annealing problem are discussed. The potential speedup when using quantum annealing is demonstrated through complexity analysis and experimental results. To showcase performance against classical principal component analysis techniques experiments upon synthetic Gaussian data, a fault detection scenario and breast cancer diagnostic data are studied. We find that the reconstruction error when using QAPCA is comparable to that when using L1-BF.
arXiv:2410.05494v3 Announce Type: replace Abstract: Tactile displays that lend tangible form to digital content could transform computing interactions. However, achieving the resolution, speed, and dynamic range needed for perceptual fidelity remains challenging. We present a tactile display that directly converts projected light into visible tactile patterns via a photomechanical surface populated with millimeter-scale optotactile pixels. The pixels transduce incident light into mechanical displacements through photostimulated thermal gas expansion, yielding millimeter scale displacements with response times of 2 to 100 milliseconds. Employing projected light for power transmission and addressing renders these displays highly scalable. We demonstrate optically driven displays with up to 1,511 addressable pixels -- several times more pixels than any prior tactile display attaining comparable performance. Perceptual studies confirm that these displays can reproduce diverse spatiotemporal tactile patterns with high fidelity. This research establishes a foundation for practical, versatile high-resolution tactile displays driven by light.
arXiv:2409.03185v2 Announce Type: replace-cross Abstract: Neutral atom (NA) quantum systems are emerging as a leading platform for quantum computation, offering superior or competitive qubit count and gate fidelity compared to superconducting circuits and ion traps. However, the unique features of NA devices, such as long-range interactions, long qubit coherence time, and the ability to physically move qubits, present distinct challenges for quantum circuit compilation. In this paper, we introduce DasAtom, a novel divide-and-shuttle atom approach designed to optimise quantum circuit transformation for NA devices by leveraging these capabilities. DasAtom partitions circuits into subcircuits, each associated with a qubit mapping that allows all gates within the subcircuit to be directly executed. The algorithm then shuttles atoms to transition seamlessly from one mapping to the next, enhancing both execution efficiency and overall fidelity. For a 30-qubit Quantum Fourier Transform (QFT), DasAtom achieves a 414x improvement in fidelity over the move-based algorithm Enola and a 10.6x improvement over the SWAP-based algorithm Tetris. Notably, this improvement is expected to increase exponentially with the number of qubits, positioning DasAtom as a highly promising solution for scaling quantum computation on NA platforms.