cs.NE

40 posts

arXiv:2501.00138v1 Announce Type: new Abstract: The Numerical Association Rule Mining paradigm that includes concurrent dealing with numerical and categorical attributes is beneficial for discovering associations from datasets consisting of both features. The process is not considered as easy since it incorporates several processing steps running sequentially that form an entire pipeline, e.g., preprocessing, algorithm selection, hyper-parameter optimization, and the definition of metrics evaluating the quality of the association rule. In this paper, we proposed a novel Automated Machine Learning method, NiaAutoARM, for constructing the full association rule mining pipelines based on stochastic population-based meta-heuristics automatically. Along with the theoretical representation of the proposed method, we also present a comprehensive experimental evaluation of the proposed method.

Uro\v{s} Mlakar, Iztok Fister Jr., Iztok Fister1/3/2025

arXiv:2501.00368v1 Announce Type: new Abstract: Soft growing robots are novel devices that mimic plant-like growth for navigation in cluttered or dangerous environments. Their ability to adapt to surroundings, combined with advancements in actuation and manufacturing technologies, allows them to perform specialized manipulation tasks. This work presents an approach for design optimization of soft growing robots; specifically, the three-dimensional extension of the optimizer designed for planar manipulators. This tool is intended to be used by engineers and robot enthusiasts before manufacturing their robot: it suggests the optimal size of the robot for solving a specific task. The design process models a multi-objective optimization problem to refine a soft manipulator's kinematic chain. Thanks to the novel Rank Partitioning algorithm integrated into Evolutionary Computation (EC) algorithms, this method achieves high precision in reaching targets and is efficient in resource usage. Results show significantly high performance in solving three-dimensional tasks, whereas comparative experiments indicate that the optimizer features robust output when tested with different EC algorithms, particularly genetic algorithms.

Ahmet Astar, Ozan Nurcan, Erk Demirel, Emir Ozen, Ozan Kutlar, Fabio Stroppa1/3/2025

arXiv:2501.00829v1 Announce Type: new Abstract: Multi-objective evolutionary algorithms (MOEAs) are widely used for searching optimal solutions in complex multi-component applications. Traditional MOEAs for multi-component deep learning (MCDL) systems face challenges in enhancing the search efficiency while maintaining the diversity. To combat these, this paper proposes $\mu$MOEA, the first LLM-empowered adaptive evolutionary search algorithm to detect safety violations in MCDL systems. Inspired by the context-understanding ability of Large Language Models (LLMs), $\mu$MOEA promotes the LLM to comprehend the optimization problem and generate an initial population tailed to evolutionary objectives. Subsequently, it employs adaptive selection and variation to iteratively produce offspring, balancing the evolutionary efficiency and diversity. During the evolutionary process, to navigate away from the local optima, $\mu$MOEA integrates the evolutionary experience back into the LLM. This utilization harnesses the LLM's quantitative reasoning prowess to generate differential seeds, breaking away from current optimal solutions. We evaluate $\mu$MOEA in finding safety violations of MCDL systems, and compare its performance with state-of-the-art MOEA methods. Experimental results show that $\mu$MOEA can significantly improve the efficiency and diversity of the evolutionary search.

Haoxiang Tian, Xingshuo Han, Guoquan Wu, An Guo, Yuan Zhou. Jie Zhang, Shuo Li, Jun Wei, Tianwei Zhang1/3/2025

arXiv:2501.01202v1 Announce Type: new Abstract: Autism Spectrum Disorder (ASD) is a chronic neurodevelopmental disorder symptoms of which includes repetitive behaviour and lack of social and communication skills. Even though these symptoms can be seen very clearly in social but a large number of individuals with ASD remain undiagnosed. In this paper, we worked on a methodology for the detection of ASD from a 3-dimensional walking video dataset, utilizing supervised machine learning (ML) classification algorithms and nature-inspired optimization algorithms for feature extraction from the dataset. The proposed methodology involves the classification of ASD using a supervised ML classification algorithm and extracting important and relevant features from the dataset using nature-inspired optimization algorithms. We also included the ranking coefficients to find the initial leading particle. This selection of particle significantly reduces the computation time and hence, improves the total efficiency and accuracy for ASD detection. To evaluate the efficiency of the proposed methodology, we deployed various combinationsalgorithms of classification algorithm and nature-inspired algorithms resulting in an outstanding classification accuracy of $100\%$ using the random forest classification algorithm and gravitational search algorithm for feature selection. The application of the proposed methodology with different datasets would enhance the robustness and generalizability of the proposed methodology. Due to high accuracy and less total computation time, the proposed methodology will offer a significant contribution to the medical and academic fields, providing a foundation for future research and advancements in ASD diagnosis.

Aneesh Panchal, Kainat Khan, Rahul Katarya1/3/2025

arXiv:2208.04957v3 Announce Type: replace Abstract: Generating agents that can achieve zero-shot coordination (ZSC) with unseen partners is a new challenge in cooperative multi-agent reinforcement learning (MARL). Recently, some studies have made progress in ZSC by exposing the agents to diverse partners during the training process. They usually involve self-play when training the partners, implicitly assuming that the tasks are homogeneous. However, many real-world tasks are heterogeneous, and hence previous methods may be inefficient. In this paper, we study the heterogeneous ZSC problem for the first time and propose a general method based on coevolution, which coevolves two populations of agents and partners through three sub-processes: pairing, updating and selection. Experimental results on various heterogeneous tasks highlight the necessity of considering the heterogeneous setting and demonstrate that our proposed method is a promising solution for heterogeneous ZSC tasks.

Ke Xue, Yutong Wang, Cong Guan, Lei Yuan, Haobo Fu, Qiang Fu, Chao Qian, Yang Yu1/3/2025

arXiv:2404.19165v2 Announce Type: replace Abstract: Spiking neural networks (SNNs) inherently rely on the timing of signals for representing and processing information. Incorporating trainable transmission delays, alongside synaptic weights, is crucial for shaping these temporal dynamics. While recent methods have shown the benefits of training delays and weights in terms of accuracy and memory efficiency, they rely on discrete time, approximate gradients, and full access to internal variables like membrane potentials. This limits their precision, efficiency, and suitability for neuromorphic hardware due to increased memory requirements and I/O bandwidth demands. To address these challenges, we propose DelGrad, an analytical, event-based method to compute exact loss gradients for both synaptic weights and delays. The inclusion of delays in the training process emerges naturally within our proposed formalism, enriching the model's search space with a temporal dimension. Moreover, DelGrad, grounded purely in spike timing, eliminates the need to track additional variables such as membrane potentials. To showcase this key advantage, we demonstrate the functionality and benefits of DelGrad on the BrainScaleS-2 neuromorphic platform, by training SNNs in a chip-in-the-loop fashion. For the first time, we experimentally demonstrate the memory efficiency and accuracy benefits of adding delays to SNNs on noisy mixed-signal hardware. Additionally, these experiments also reveal the potential of delays for stabilizing networks against noise. DelGrad opens a new way for training SNNs with delays on neuromorphic hardware, which results in less number of required parameters, higher accuracy and ease of hardware training.

Julian G\"oltz, Jimmy Weber, Laura Kriener, Sebastian Billaudelle, Peter Lake, Johannes Schemmel, Melika Payvand, Mihai A. Petrovici12/25/2024

arXiv:2408.14909v2 Announce Type: replace Abstract: Known as low energy consumption networks, spiking neural networks (SNNs) have gained a lot of attention within the past decades. While SNNs are increasing competitive with artificial neural networks (ANNs) for vision tasks, they are rarely used for long sequence tasks, despite their intrinsic temporal dynamics. In this work, we develop spiking state space models (SpikingSSMs) for long sequence learning by leveraging on the sequence learning abilities of state space models (SSMs). Inspired by dendritic neuron structure, we hierarchically integrate neuronal dynamics with the original SSM block, meanwhile realizing sparse synaptic computation. Furthermore, to solve the conflict of event-driven neuronal dynamics with parallel computing, we propose a light-weight surrogate dynamic network which accurately predicts the after-reset membrane potential and compatible to learnable thresholds, enabling orders of acceleration in training speed compared with conventional iterative methods. On the long range arena benchmark task, SpikingSSM achieves competitive performance to state-of-the-art SSMs meanwhile realizing on average 90\% of network sparsity. On language modeling, our network significantly surpasses existing spiking large language models (spikingLLMs) on the WikiText-103 dataset with only a third of the model size, demonstrating its potential as backbone architecture for low computation cost LLMs.

Shuaijie Shen, Chao Wang, Renzhuo Huang, Yan Zhong, Qinghai Guo, Zhichao Lu, Jianguo Zhang, Luziwei Leng12/25/2024

arXiv:2412.17926v1 Announce Type: new Abstract: The extensive development of the field of spiking neural networks has led to many areas of research that have a direct impact on people's lives. As the most bio-similar of all neural networks, spiking neural networks not only allow the solution of recognition and clustering problems (including dynamics), but also contribute to the growing knowledge of the human nervous system. Our analysis has shown that the hardware implementation is of great importance, since the specifics of the physical processes in the network cells affect their ability to simulate the neural activity of living neural tissue, the efficiency of certain stages of information processing, storage and transmission. This survey reviews existing hardware neuromorphic implementations of bio-inspired spiking networks in the "semiconductor", "superconductor" and "optical" domains. Special attention is given to the possibility of effective "hybrids" of different approaches

Andrey E. Schegolev, Marina V. Bastrakova, Michael A. Sergeev, Anastasia A. Maksimovskaya, Nikolay V. Klenov, Igor I. Soloviev12/25/2024

arXiv:2412.13541v2 Announce Type: replace Abstract: Fine-grained emotion recognition (FER) plays a vital role in various fields, such as disease diagnosis, personalized recommendations, and multimedia mining. However, existing FER methods face three key challenges in real-world applications: (i) they rely on large amounts of continuously annotated data to ensure accuracy since emotions are complex and ambiguous in reality, which is costly and time-consuming; (ii) they cannot capture the temporal heterogeneity caused by changing emotion patterns, because they usually assume that the temporal correlation within sampling periods is the same; (iii) they do not consider the spatial heterogeneity of different FER scenarios, that is, the distribution of emotion information in different data may have bias or interference. To address these challenges, we propose a Spatio-Temporal Fuzzy-oriented Multi-modal Meta-learning framework (ST-F2M). Specifically, ST-F2M first divides the multi-modal videos into multiple views, and each view corresponds to one modality of one emotion. Multiple randomly selected views for the same emotion form a meta-training task. Next, ST-F2M uses an integrated module with spatial and temporal convolutions to encode the data of each task, reflecting the spatial and temporal heterogeneity. Then it adds fuzzy semantic information to each task based on generalized fuzzy rules, which helps handle the complexity and ambiguity of emotions. Finally, ST-F2M learns emotion-related general meta-knowledge through meta-recurrent neural networks to achieve fast and robust fine-grained emotion recognition. Extensive experiments show that ST-F2M outperforms various state-of-the-art methods in terms of accuracy and model efficiency. In addition, we construct ablation studies and further analysis to explore why ST-F2M performs well.

Jingyao Wang, Yuxuan Yang, Wenwen Qiang, Changwen Zheng, Hui Xiong12/25/2024

arXiv:2412.14522v2 Announce Type: replace Abstract: Electroencephalogram (EEG) signals are critical for detecting abnormal brain activity, but their high dimensionality and complexity pose significant challenges for effective analysis. In this paper, we propose CwA-T, a novel framework that combines a channelwise CNN-based autoencoder with a single-head transformer classifier for efficient EEG abnormality detection. The channelwise autoencoder compresses raw EEG signals while preserving channel independence, reducing computational costs and retaining biologically meaningful features. The compressed representations are then fed into the transformer-based classifier, which efficiently models long-term dependencies to distinguish between normal and abnormal signals. Evaluated on the TUH Abnormal EEG Corpus, the proposed model achieves 85.0% accuracy, 76.2% sensitivity, and 91.2% specificity at the per-case level, outperforming baseline models such as EEGNet, Deep4Conv, and FusionCNN. Furthermore, CwA-T requires only 202M FLOPs and 2.9M parameters, making it significantly more efficient than transformer-based alternatives. The framework retains interpretability through its channelwise design, demonstrating great potential for future applications in neuroscience research and clinical practice. The source code is available at https://github.com/YossiZhao/CAE-T.

Youshen Zhao, Keiji Iramina12/25/2024

arXiv:2411.10958v3 Announce Type: replace Abstract: Although quantization for linear layers has been widely used, its application to accelerate the attention process remains limited. To further enhance the efficiency of attention computation compared to SageAttention while maintaining precision, we propose SageAttention2, which utilizes significantly faster 4-bit matrix multiplication (Matmul) alongside additional precision-enhancing techniques. First, we propose to quantize matrixes $(Q, K)$ to INT4 in a hardware-friendly thread-level granularity and quantize matrixes $(\widetilde P, V)$ to FP8. Second, we propose a method to smooth $Q$, enhancing the accuracy of INT4 $QK$. Third, we propose to use an FP32 Matmul buffer for $PV$ to enhance the accuracy of FP8 $\widetilde PV$. The operations per second (OPS) of SageAttention2 surpass FlashAttention2 and xformers by about 3x and 5x on RTX4090, respectively. Comprehensive experiments confirm that our approach incurs negligible end-to-end metrics loss across diverse models, including those for large language processing, image generation, and video generation. The codes are available at https://github.com/thu-ml/SageAttention.

Jintao Zhang, Haofeng Huang, Pengle Zhang, Jia Wei, Jun Zhu, Jianfei Chen12/25/2024

arXiv:2412.17855v1 Announce Type: new Abstract: Optimization techniques are pivotal in neural network training, shaping both predictive performance and convergence efficiency. This study introduces Foxtsage, a novel hybrid optimisation approach that integrates the Hybrid FOX-TSA with Stochastic Gradient Descent for training Multi-Layer Perceptron models. The proposed Foxtsage method is benchmarked against the widely adopted Adam optimizer across multiple standard datasets, focusing on key performance metrics such as training loss, accuracy, precision, recall, F1-score, and computational time. Experimental results demonstrate that Foxtsage achieves a 42.03% reduction in loss mean (Foxtsage: 9.508, Adam: 16.402) and a 42.19% improvement in loss standard deviation (Foxtsage: 20.86, Adam: 36.085), reflecting enhanced consistency and robustness. Modest improvements in accuracy mean (0.78%), precision mean (0.91%), recall mean (1.02%), and F1-score mean (0.89%) further underscore its predictive performance. However, these gains are accompanied by an increased computational cost, with a 330.87% rise in time mean (Foxtsage: 39.541 seconds, Adam: 9.177 seconds). By effectively combining the global search capabilities of FOX-TSA with the stability and adaptability of SGD, Foxtsage presents itself as a robust and viable alternative for neural network optimization tasks.

Sirwan A. Aula, Tarik A. Rashid12/25/2024

arXiv:2412.17977v1 Announce Type: new Abstract: Temporal Neural Networks (TNNs), a special class of spiking neural networks, draw inspiration from the neocortex in utilizing spike-timings for information processing. Recent works proposed a microarchitecture framework and custom macro suite for designing highly energy-efficient application-specific TNNs. These recent works rely on manual hardware design, a labor-intensive and time-consuming process. Further, there is no open-source functional simulation framework for TNNs. This paper introduces TNNGen, a pioneering effort towards the automated design of TNNs from PyTorch software models to post-layout netlists. TNNGen comprises a novel PyTorch functional simulator (for TNN modeling and application exploration) coupled with a Python-based hardware generator (for PyTorch-to-RTL and RTL-to-Layout conversions). Seven representative TNN designs for time-series signal clustering across diverse sensory modalities are simulated and their post-layout hardware complexity and design runtimes are assessed to demonstrate the effectiveness of TNNGen. We also highlight TNNGen's ability to accurately forecast silicon metrics without running hardware process flow.

Prabhu Vellaisamy, Harideep Nair, Vamsikrishna Ratnakaram, Dhruv Gupta, John Paul Shen12/25/2024

arXiv:2412.18349v1 Announce Type: new Abstract: Neural associative memories are single layer perceptrons with fast synaptic learning typically storing discrete associations between pairs of neural activity patterns. Previous works have analyzed the optimal networks under naive Bayes assumptions of independent pattern components and heteroassociation, where the task is to learn associations from input to output patterns. Here I study the optimal Bayesian associative network for auto-association where input and output layers are identical. In particular, I compare performance to different variants of approximate Bayesian learning rules, like the BCPNN (Bayesian Confidence Propagation Neural Network), and try to explain why sometimes the suboptimal learning rules achieve higher storage capacity than the (theoretically) optimal model. It turns out that performance can depend on subtle dependencies of input components violating the ``naive Bayes'' assumptions. This includes patterns with constant number of active units, iterative retrieval where patterns are repeatedly propagated through recurrent networks, and winners-take-all activation of the most probable units. Performance of all learning rules can improve significantly if they include a novel adaptive mechanism to estimate noise in iterative retrieval steps (ANE). The overall maximum storage capacity is achieved again by the Bayesian learning rule with ANE.

Andreas Knoblauch12/25/2024

arXiv:2412.18375v1 Announce Type: new Abstract: This paper addresses theory in evolutionary multiobjective optimisation (EMO) and focuses on the role of crossover operators in many-objective optimisation. The advantages of using crossover are hardly understood and rigorous runtime analyses with crossover are lagging far behind its use in practice, specifically in the case of more than two objectives. We present a many-objective problem class together with a theoretical runtime analysis of the widely used NSGA-III to demonstrate that crossover can yield an exponential speedup on the runtime. In particular, this algorithm can find the Pareto set in expected polynomial time when using crossover while without crossover it requires exponential time to even find a single Pareto-optimal point. To our knowledge, this is the first rigorous runtime analysis in many-objective optimisation demonstrating an exponential performance gap when using crossover for more than two objectives.

Andre Opris12/25/2024

arXiv:2412.01110v3 Announce Type: replace-cross Abstract: Statistical physics provides tools for analyzing high-dimensional problems in machine learning and theoretical neuroscience. These calculations, particularly those using the replica method, often involve lengthy derivations that can obscure physical interpretation. We give concise, non-replica derivations of several key results and highlight their underlying similarities. Specifically, we introduce a cavity approach to analyzing high-dimensional learning problems and apply it to three cases: perceptron classification of points, perceptron classification of manifolds, and kernel ridge regression. These problems share a common structure -- a bipartite system of interacting feature and datum variables -- enabling a unified analysis. For perceptron-capacity problems, we identify a symmetry that allows derivation of correct capacities through a na\"ive method. These results match those obtained through the replica method.

David G. Clark, Haim Sompolinsky12/24/2024

arXiv:2412.17629v1 Announce Type: new Abstract: In this paper, we reveal the intrinsic duality between graph neural networks (GNNs) and evolutionary algorithms (EAs), bridging two traditionally distinct fields. Building on this insight, we propose Graph Neural Evolution (GNE), a novel evolutionary algorithm that models individuals as nodes in a graph and leverages designed frequency-domain filters to balance global exploration and local exploitation. Through the use of these filters, GNE aggregates high-frequency (diversity-enhancing) and low-frequency (stability-promoting) information, transforming EAs into interpretable and tunable mechanisms in the frequency domain. Extensive experiments on benchmark functions demonstrate that GNE consistently outperforms state-of-the-art algorithms such as GA, DE, CMA-ES, SDAES, and RL-SHADE, excelling in complex landscapes, optimal solution shifts, and noisy environments. Its robustness, adaptability, and superior convergence highlight its practical and theoretical value. Beyond optimization, GNE establishes a conceptual and mathematical foundation linking EAs and GNNs, offering new perspectives for both fields. Its framework encourages the development of task-adaptive filters and hybrid approaches for EAs, while its insights can inspire advances in GNNs, such as improved global information propagation and mitigation of oversmoothing. GNE's versatility extends to solving challenges in machine learning, including hyperparameter tuning and neural architecture search, as well as real-world applications in engineering and operations research. By uniting the dynamics of EAs with the structural insights of GNNs, this work provides a foundation for interdisciplinary innovation, paving the way for scalable and interpretable solutions to complex optimization problems.

Kaichen Ouyang, Shengwei Fu12/24/2024

arXiv:2412.17799v1 Announce Type: new Abstract: With the recent Nobel Prize awarded for radical advances in protein discovery, foundation models (FMs) for exploring large combinatorial spaces promise to revolutionize many scientific fields. Artificial Life (ALife) has not yet integrated FMs, thus presenting a major opportunity for the field to alleviate the historical burden of relying chiefly on manual design and trial-and-error to discover the configurations of lifelike simulations. This paper presents, for the first time, a successful realization of this opportunity using vision-language FMs. The proposed approach, called Automated Search for Artificial Life (ASAL), (1) finds simulations that produce target phenomena, (2) discovers simulations that generate temporally open-ended novelty, and (3) illuminates an entire space of interestingly diverse simulations. Because of the generality of FMs, ASAL works effectively across a diverse range of ALife substrates including Boids, Particle Life, Game of Life, Lenia, and Neural Cellular Automata. A major result highlighting the potential of this technique is the discovery of previously unseen Lenia and Boids lifeforms, as well as cellular automata that are open-ended like Conway's Game of Life. Additionally, the use of FMs allows for the quantification of previously qualitative phenomena in a human-aligned way. This new paradigm promises to accelerate ALife research beyond what is possible through human ingenuity alone.

Akarsh Kumar, Chris Lu, Louis Kirsch, Yujin Tang, Kenneth O. Stanley, Phillip Isola, David Ha12/24/2024

arXiv:2412.17183v1 Announce Type: cross Abstract: We present the design for a thermodynamic computer that can perform arbitrary nonlinear calculations in or out of equilibrium. Simple thermodynamic circuits, fluctuating degrees of freedom in contact with a thermal bath and confined by a quartic potential, display an activity that is a nonlinear function of their input. Such circuits can therefore be regarded as thermodynamic neurons, and can serve as the building blocks of networked structures that act as thermodynamic neural networks, universal function approximators whose operation is powered by thermal fluctuations. We simulate a digital model of a thermodynamic neural network, and show that its parameters can be adjusted by genetic algorithm to perform nonlinear calculations at specified observation times, regardless of whether the system has attained thermal equilibrium. This work expands the field of thermodynamic computing beyond the regime of thermal equilibrium, enabling fully nonlinear computations, analogous to those performed by classical neural networks, at specified observation times.

Stephen Whitelam, Corneel Casert12/24/2024

arXiv:2412.17580v1 Announce Type: cross Abstract: Variational quantum circuits have arisen as an important method in quantum computing. A crucial step of it is parameter optimization, which is typically tackled through gradient-descent techniques. We advantageously explore instead the use of evolutionary algorithms for such optimization, specifically for time-series forecasting. We perform a comparison, for diverse instances of real-world data, between gradient-descent parameter optimization and covariant-matrix adaptation evolutionary strategy. We observe that gradient descent becomes permanently trapped in local minima that have been avoided by evolutionary algorithms in all tested datasets, reaching up to a six-fold decrease in prediction error. Finally, the combined use of evolutionary and gradient-based techniques is explored, aiming at retaining advantages of both. The results are particularly applicable in scenarios sensitive to gains in accuracy.

Vignesh Anantharamakrishnan, M\'arcio M. Taddei12/24/2024