cs.CL

687 posts

arXiv:2501.00066v1 Announce Type: new Abstract: We investigate the adversarial robustness of LLMs in transfer learning scenarios. Through comprehensive experiments on multiple datasets (MBIB Hate Speech, MBIB Political Bias, MBIB Gender Bias) and various model architectures (BERT, RoBERTa, GPT-2, Gemma, Phi), we reveal that transfer learning, while improving standard performance metrics, often leads to increased vulnerability to adversarial attacks. Our findings demonstrate that larger models exhibit greater resilience to this phenomenon, suggesting a complex interplay between model size, architecture, and adaptation methods. Our work highlights the crucial need for considering adversarial robustness in transfer learning scenarios and provides insights into maintaining model security without compromising performance. These findings have significant implications for the development and deployment of LLMs in real-world applications where both performance and robustness are paramount.

Bohdan Turbal, Anastasiia Mazur, Jiaxu Zhao, Mykola Pechenizkiy1/3/2025

arXiv:2501.00164v1 Announce Type: new Abstract: Since the launch of ChatGPT in late 2022, the capacities of Large Language Models and their evaluation have been in constant discussion and evaluation both in academic research and in the industry. Scenarios and benchmarks have been developed in several areas such as law, medicine and math (Bommasani et al., 2023) and there is continuous evaluation of model variants. One area that has not received sufficient scenario development attention is journalism, and in particular journalistic sourcing and ethics. Journalism is a crucial truth-determination function in democracy (Vincent, 2023), and sourcing is a crucial pillar to all original journalistic output. Evaluating the capacities of LLMs to annotate stories for the different signals of sourcing and how reporters justify them is a crucial scenario that warrants a benchmark approach. It offers potential to build automated systems to contrast more transparent and ethically rigorous forms of journalism with everyday fare. In this paper we lay out a scenario to evaluate LLM performance on identifying and annotating sourcing in news stories on a five-category schema inspired from journalism studies (Gans, 2004). We offer the use case, our dataset and metrics and as the first step towards systematic benchmarking. Our accuracy findings indicate LLM-based approaches have more catching to do in identifying all the sourced statements in a story, and equally, in matching the type of sources. An even harder task is spotting source justifications.

Subramaniam Vincent, Phoebe Wang, Zhan Shi, Sahas Koka, Yi Fang1/3/2025

arXiv:2501.00049v1 Announce Type: new Abstract: A chatbot is an intelligent software application that automates conversations and engages users in natural language through messaging platforms. Leveraging artificial intelligence (AI), chatbots serve various functions, including customer service, information gathering, and casual conversation. Existing virtual assistant chatbots, such as ChatGPT and Gemini, demonstrate the potential of AI in Natural Language Processing (NLP). However, many current solutions rely on predefined APIs, which can result in vendor lock-in and high costs. To address these challenges, this work proposes a chatbot developed using a Sequence-to-Sequence (Seq2Seq) model with an encoder-decoder architecture that incorporates attention mechanisms and Long Short-Term Memory (LSTM) cells. By avoiding predefined APIs, this approach ensures flexibility and cost-effectiveness. The chatbot is trained, validated, and tested on a dataset specifically curated for the tourism sector in Draa-Tafilalet, Morocco. Key evaluation findings indicate that the proposed Seq2Seq model-based chatbot achieved high accuracies: approximately 99.58% in training, 98.03% in validation, and 94.12% in testing. These results demonstrate the chatbot's effectiveness in providing relevant and coherent responses within the tourism domain, highlighting the potential of specialized AI applications to enhance user experience and satisfaction in niche markets.

Lamya Benaddi, Charaf Ouaddi, Adnane Souha, Abdeslam Jakimi, Mohamed Rahouti, Mohammed Aledhari, Diogo Oliveira, Brahim Ouchao1/3/2025

arXiv:2501.00062v1 Announce Type: new Abstract: Bidirectional transformers excel at sentiment analysis, and Large Language Models (LLM) are effective zero-shot learners. Might they perform better as a team? This paper explores collaborative approaches between ELECTRA and GPT-4o for three-way sentiment classification. We fine-tuned (FT) four models (ELECTRA Base/Large, GPT-4o/4o-mini) using a mix of reviews from Stanford Sentiment Treebank (SST) and DynaSent. We provided input from ELECTRA to GPT as: predicted label, probabilities, and retrieved examples. Sharing ELECTRA Base FT predictions with GPT-4o-mini significantly improved performance over either model alone (82.74 macro F1 vs. 79.29 ELECTRA Base FT, 79.52 GPT-4o-mini) and yielded the lowest cost/performance ratio (\$0.12/F1 point). However, when GPT models were fine-tuned, including predictions decreased performance. GPT-4o FT-M was the top performer (86.99), with GPT-4o-mini FT close behind (86.77) at much less cost (\$0.38 vs. \$1.59/F1 point). Our results show that augmenting prompts with predictions from fine-tuned encoders is an efficient way to boost performance, and a fine-tuned GPT-4o-mini is nearly as good as GPT-4o FT at 76% less cost. Both are affordable options for projects with limited resources.

James P. Beno1/3/2025

arXiv:2501.00073v1 Announce Type: new Abstract: Transformers with causal attention can solve tasks that require positional information without using positional encodings. In this work, we propose and investigate a new hypothesis about how positional information can be stored without using explicit positional encoding. We observe that nearby embeddings are more similar to each other than faraway embeddings, allowing the transformer to potentially reconstruct the positions of tokens. We show that this pattern can occur in both the trained and the randomly initialized Transformer models with causal attention and no positional encodings over a common range of hyperparameters.

Chunsheng Zuo, Pavel Guerzhoy, Michael Guerzhoy1/3/2025

arXiv:2501.00152v1 Announce Type: new Abstract: This paper explores whether enhancing temporal reasoning capabilities in Large Language Models (LLMs) can improve the quality of timeline summarization, the task of summarising long texts containing sequences of events, particularly social media threads . We introduce \textit{NarrativeReason}, a novel dataset focused on temporal relationships among sequential events within narratives, distinguishing it from existing temporal reasoning datasets that primarily address pair-wise event relationships. Our approach then combines temporal reasoning with timeline summarization through a knowledge distillation framework, where we first fine-tune a teacher model on temporal reasoning tasks and then distill this knowledge into a student model while simultaneously training it for the task of timeline summarization. Experimental results demonstrate that our model achieves superior performance on mental health-related timeline summarization tasks, which involve long social media threads with repetitions of events and a mix of emotions, highlighting the importance of leveraging temporal reasoning to improve timeline summarisation.

Jiayu Song, Mahmud Akhter, Dana Atzil Slonim, Maria Liakata1/3/2025

arXiv:2501.00030v1 Announce Type: new Abstract: Many studies have revealed that sentence comprehension relies more on semantic processing than on syntactic processing. However, previous studies have predominantly emphasized the preference for semantic processing, focusing on the semantic perspective. In contrast, this current study highlights the under-utilization of syntactic processing, from a syntactic perspective. Based on the traditional garden-path experiment, which involves locally ambiguous but globally unambiguous sentences, this study's empirical experiment innovatively crafted an adapted version featuring semantically ambiguous but syntactically unambiguous sentences to meet its specific research objective. This experiment, involving 140 subjects, demonstrates through descriptive and inferential statistical analyses using SPSS, Graph Pad Prism, and Cursor that Chinese learners of English tend to under-utilize syntactic processing when comprehending English sentences. The study identifies two types of parsing under-utilization: partial and complete. Further exploration reveals that trial and error in syntactic processing contributes to both. Consequently, this study lays a foundation for the development of a novel parsing method designed to fully integrate syntactic processing into sentence comprehension, thereby enhancing the level of English sentence comprehension for Chinese learners of English.

Jiapeng Xu1/3/2025

arXiv:2501.00045v1 Announce Type: new Abstract: This study investigates the effectiveness of transfer learning in machine translation across diverse linguistic families by evaluating five distinct language pairs. Leveraging pre-trained models on high-resource languages, these models were fine-tuned on low-resource languages, examining variations in hyperparameters such as learning rate, batch size, number of epochs, and weight decay. The research encompasses language pairs from different linguistic backgrounds: Semitic (Modern Standard Arabic - Levantine Arabic), Bantu (Hausa - Zulu), Romance (Spanish - Catalan), Slavic (Slovakian - Macedonian), and language isolates (Eastern Armenian - Western Armenian). Results demonstrate that transfer learning is effective across different language families, although the impact of hyperparameters varies. A moderate batch size (e.g., 32) is generally more effective, while very high learning rates can disrupt model training. The study highlights the universality of transfer learning in multilingual contexts and suggests that consistent hyperparameter settings can simplify and enhance the efficiency of multilingual model training.

Saughmon Boujkian1/3/2025

arXiv:2501.00055v1 Announce Type: new Abstract: While safety-aligned large language models (LLMs) are increasingly used as the cornerstone for powerful systems such as multi-agent frameworks to solve complex real-world problems, they still suffer from potential adversarial queries, such as jailbreak attacks, which attempt to induce harmful content. Researching attack methods allows us to better understand the limitations of LLM and make trade-offs between helpfulness and safety. However, existing jailbreak attacks are primarily based on opaque optimization techniques (e.g. token-level gradient descent) and heuristic search methods like LLM refinement, which fall short in terms of transparency, transferability, and computational cost. In light of these limitations, we draw inspiration from the evolution and infection processes of biological viruses and propose LLM-Virus, a jailbreak attack method based on evolutionary algorithm, termed evolutionary jailbreak. LLM-Virus treats jailbreak attacks as both an evolutionary and transfer learning problem, utilizing LLMs as heuristic evolutionary operators to ensure high attack efficiency, transferability, and low time cost. Our experimental results on multiple safety benchmarks show that LLM-Virus achieves competitive or even superior performance compared to existing attack methods.

Miao Yu, Junfeng Fang, Yingjie Zhou, Xing Fan, Kun Wang, Shirui Pan, Qingsong Wen1/3/2025

arXiv:2501.00059v1 Announce Type: new Abstract: Mathematical problem-solving is a key field in artificial intelligence (AI) and a critical benchmark for evaluating the capabilities of large language models (LLMs). While extensive research has focused on mathematical problem-solving, most existing work and datasets concentrate on computational tasks, leaving gaps in areas like mathematical analysis, which demands rigorous proofs and formal reasoning. We developed the DEMI-MathAnalysis dataset, comprising proof-based problems from mathematical analysis topics such as Sequences and Limits, Infinite Series, and Convex Functions. We also designed a guiding framework to rigorously enhance LLMs' ability to solve these problems. Through fine-tuning LLMs on this dataset and employing our framework, we observed significant improvements in their capability to generate logical, complete, and elegant proofs. This work addresses critical gaps in mathematical reasoning and contributes to advancing trustworthy AI capable of handling formalized mathematical language. The code is publicly accessible at LLMs for Mathematical Analysis.

Ziye Chen, Hao Qi1/3/2025

arXiv:2501.00069v1 Announce Type: new Abstract: Generative language models are increasingly used for contract drafting and enhancement, creating a scenario where competing parties deploy different language models against each other. This introduces not only a game-theory challenge but also significant concerns related to AI safety and security, as the language model employed by the opposing party can be unknown. These competitive interactions can be seen as adversarial testing grounds, where models are effectively red-teamed to expose vulnerabilities such as generating biased, harmful or legally problematic text. Despite the importance of these challenges, the competitive robustness and safety of these models in adversarial settings remain poorly understood. In this small study, we approach this problem by evaluating the performance and vulnerabilities of major open-source language models in head-to-head competitions, simulating real-world contract negotiations. We further explore how these adversarial interactions can reveal potential risks, informing the development of more secure and reliable models. Our findings contribute to the growing body of research on AI safety, offering insights into model selection and optimisation in competitive legal contexts and providing actionable strategies for mitigating risks.

Arinbj\"orn Kolbeinsson, Benedikt Kolbeinsson1/3/2025

arXiv:2501.00070v1 Announce Type: new Abstract: Recent work has demonstrated that semantics specified by pretraining data influence how representations of different concepts are organized in a large language model (LLM). However, given the open-ended nature of LLMs, e.g., their ability to in-context learn, we can ask whether models alter these pretraining semantics to adopt alternative, context-specified ones. Specifically, if we provide in-context exemplars wherein a concept plays a different role than what the pretraining data suggests, do models reorganize their representations in accordance with these novel semantics? To answer this question, we take inspiration from the theory of conceptual role semantics and define a toy "graph tracing" task wherein the nodes of the graph are referenced via concepts seen during training (e.g., apple, bird, etc.) and the connectivity of the graph is defined via some predefined structure (e.g., a square grid). Given exemplars that indicate traces of random walks on the graph, we analyze intermediate representations of the model and find that as the amount of context is scaled, there is a sudden re-organization from pretrained semantic representations to in-context representations aligned with the graph structure. Further, we find that when reference concepts have correlations in their semantics (e.g., Monday, Tuesday, etc.), the context-specified graph structure is still present in the representations, but is unable to dominate the pretrained structure. To explain these results, we analogize our task to energy minimization for a predefined graph topology, providing evidence towards an implicit optimization process to infer context-specified semantics. Overall, our findings indicate scaling context-size can flexibly re-organize model representations, possibly unlocking novel capabilities.

Core Francisco Park, Andrew Lee, Ekdeep Singh Lubana, Yongyi Yang, Maya Okawa, Kento Nishi, Martin Wattenberg, Hidenori Tanaka1/3/2025

arXiv:2501.00097v1 Announce Type: new Abstract: This paper introduces CaseSumm, a novel dataset for long-context summarization in the legal domain that addresses the need for longer and more complex datasets for summarization evaluation. We collect 25.6K U.S. Supreme Court (SCOTUS) opinions and their official summaries, known as "syllabuses." Our dataset is the largest open legal case summarization dataset, and is the first to include summaries of SCOTUS decisions dating back to 1815. We also present a comprehensive evaluation of LLM-generated summaries using both automatic metrics and expert human evaluation, revealing discrepancies between these assessment methods. Our evaluation shows Mistral 7b, a smaller open-source model, outperforms larger models on most automatic metrics and successfully generates syllabus-like summaries. In contrast, human expert annotators indicate that Mistral summaries contain hallucinations. The annotators consistently rank GPT-4 summaries as clearer and exhibiting greater sensitivity and specificity. Further, we find that LLM-based evaluations are not more correlated with human evaluations than traditional automatic metrics. Furthermore, our analysis identifies specific hallucinations in generated summaries, including precedent citation errors and misrepresentations of case facts. These findings demonstrate the limitations of current automatic evaluation methods for legal summarization and highlight the critical role of human evaluation in assessing summary quality, particularly in complex, high-stakes domains. CaseSumm is available at https://huggingface.co/datasets/ChicagoHAI/CaseSumm

Mourad Heddaya, Kyle MacMillan, Anup Malani, Hongyuan Mei, Chenhao Tan1/3/2025

arXiv:2501.00129v1 Announce Type: new Abstract: Introduction: Healthcare AI models often inherit biases from their training data. While efforts have primarily targeted bias in structured data, mental health heavily depends on unstructured data. This study aims to detect and mitigate linguistic differences related to non-biological differences in the training data of AI models designed to assist in pediatric mental health screening. Our objectives are: (1) to assess the presence of bias by evaluating outcome parity across sex subgroups, (2) to identify bias sources through textual distribution analysis, and (3) to develop a de-biasing method for mental health text data. Methods: We examined classification parity across demographic groups and assessed how gendered language influences model predictions. A data-centric de-biasing method was applied, focusing on neutralizing biased terms while retaining salient clinical information. This methodology was tested on a model for automatic anxiety detection in pediatric patients. Results: Our findings revealed a systematic under-diagnosis of female adolescent patients, with a 4% lower accuracy and a 9% higher False Negative Rate (FNR) compared to male patients, likely due to disparities in information density and linguistic differences in patient notes. Notes for male patients were on average 500 words longer, and linguistic similarity metrics indicated distinct word distributions between genders. Implementing our de-biasing approach reduced diagnostic bias by up to 27%, demonstrating its effectiveness in enhancing equity across demographic groups. Discussion: We developed a data-centric de-biasing framework to address gender-based content disparities within clinical text. By neutralizing biased language and enhancing focus on clinically essential information, our approach demonstrates an effective strategy for mitigating bias in AI healthcare models trained on text.

Julia Ive, Paulina Bondaronek, Vishal Yadav, Daniel Santel, Tracy Glauser, Tina Cheng, Jeffrey R. Strawn, Greeshma Agasthya, Jordan Tschida, Sanghyun Choo, Mayanka Chandrashekar, Anuj J. Kapadia, John Pestian1/3/2025

arXiv:2501.00004v1 Announce Type: new Abstract: Information prioritization plays an important role in how humans perceive and understand the world. Homepage layouts serve as a tangible proxy for this prioritization. In this work, we present NewsHomepages, a large dataset of over 3,000 new website homepages (including local, national and topic-specific outlets) captured twice daily over a three-year period. We develop models to perform pairwise comparisons between news items to infer their relative significance. To illustrate that modeling organizational hierarchies has broader implications, we applied our models to rank-order a collection of local city council policies passed over a ten-year period in San Francisco, assessing their "newsworthiness". Our findings lay the groundwork for leveraging implicit organizational cues to deepen our understanding of information prioritization.

Ben Welsh, Naitian Zhou, Arda Kaz, Michael Vu, Alexander Spangher1/3/2025

arXiv:2501.00029v1 Announce Type: new Abstract: We review the recent literature (January 2022- October 2024) in South Asian languages on text-based language processing, multimodal models, and speech processing, and provide a spotlight analysis focused on 21 low-resource South Asian languages, namely Saraiki, Assamese, Balochi, Bhojpuri, Bodo, Burmese, Chhattisgarhi, Dhivehi, Gujarati, Kannada, Kashmiri, Konkani, Khasi, Malayalam, Meitei, Nepali, Odia, Pashto, Rajasthani, Sindhi, and Telugu. We identify trends, challenges, and future research directions, using a step-wise approach that incorporates relevance classification and clustering based on large language models (LLMs). Our goal is to provide a breadth-first overview of the recent developments in South Asian language technologies to NLP researchers interested in working with South Asian languages.

Pranav Gupta1/3/2025

arXiv:2501.00031v1 Announce Type: new Abstract: Large language models (LLMs) excel at clinical information extraction but their computational demands limit practical deployment. Knowledge distillation--the process of transferring knowledge from larger to smaller models--offers a potential solution. We evaluate the performance of distilled BERT models, which are approximately 1,000 times smaller than modern LLMs, for clinical named entity recognition (NER) tasks. We leveraged state-of-the-art LLMs (Gemini and OpenAI models) and medical ontologies (RxNorm and SNOMED) as teacher labelers for medication, disease, and symptom extraction. We applied our approach to over 3,300 clinical notes spanning five publicly available datasets, comparing distilled BERT models against both their teacher labelers and BERT models fine-tuned on human labels. External validation was conducted using clinical notes from the MedAlign dataset. For disease extraction, F1 scores were 0.82 (teacher model), 0.89 (BioBERT trained on human labels), and 0.84 (BioBERT-distilled). For medication, F1 scores were 0.84 (teacher model), 0.91 (BioBERT-human), and 0.87 (BioBERT-distilled). For symptoms: F1 score of 0.73 (teacher model) and 0.68 (BioBERT-distilled). Distilled BERT models had faster inference (12x, 4x, 8x faster than GPT-4o, o1-mini, and Gemini Flash respectively) and lower costs (85x, 101x, 2x cheaper than GPT-4o, o1-mini, and Gemini Flash respectively). On the external validation dataset, the distilled BERT model achieved F1 scores of 0.883 (medication), 0.726 (disease), and 0.699 (symptom). Distilled BERT models were up to 101x cheaper and 12x faster than state-of-the-art LLMs while achieving similar performance on NER tasks. Distillation offers a computationally efficient and scalable alternative to large LLMs for clinical information extraction.

Karthik S. Vedula, Annika Gupta, Akshay Swaminathan, Ivan Lopez, Suhana Bedi, Nigam H. Shah1/3/2025

arXiv:2501.00032v1 Announce Type: new Abstract: Large language models (LLMs) have transformed the way we think about language understanding and generation, enthralling both researchers and developers. However, deploying LLMs for inference has been a significant challenge due to their unprecedented size and resource requirements. While quantizing model weights to sub-byte precision has emerged as a promising solution to ease memory pressure, the group quantization formats commonly used for LLM quantization have significant compute overheads and a resource-intensive dequantization process. As a result, a higher proportion of compute instructions do not perform multiplies, i.e., real work, rendering them unsuitable for meeting the required latency requirements for LLMs deployed on commodity CPUs. In this work, we propose a set of highly optimized kernels to accelerate LLM inference and unleash the full potential of CPUs, particularly Arm CPUs. These kernels amortize the cost of loading the operands and the cost of weight unpacking across multiple output rows. This, along with the introduction of an optimized interleaved group data layout for weights and decompression path optimizations to reduce unnecessary operations and dequantization overhead while maximizing the use of vector and matrix multiply operations, significantly improves the efficiency of MAC operations. Furthermore, we present a groupwise non-uniform codebook-based quantization method for ultra-low-precision quantization of LLMs to better match non-uniform patterns in their weight distributions, demonstrating better throughput during token generation while ensuring better quality than the state-of-the-art. Applying these improvements to 4-bit LLMs results in a 3-3.2x improvement in prompt processing and a 2x improvement in autoregressive decoding on Arm CPUs, compared to LLaMA.cpp-based solution. The optimized kernels are available at https://github.com/ggerganov/llama.cpp.

Dibakar Gope, David Mansell, Danny Loh, Ian Bratt1/3/2025

arXiv:2501.00054v1 Announce Type: new Abstract: Security concerns surrounding text-to-image diffusion models have driven researchers to unlearn inappropriate concepts through fine-tuning. Recent fine-tuning methods typically align the prediction distributions of unsafe prompts with those of predefined text anchors. However, these techniques exhibit a considerable performance trade-off between eliminating undesirable concepts and preserving other concepts. In this paper, we systematically analyze the impact of diverse text anchors on unlearning performance. Guided by this analysis, we propose AdvAnchor, a novel approach that generates adversarial anchors to alleviate the trade-off issue. These adversarial anchors are crafted to closely resemble the embeddings of undesirable concepts to maintain overall model performance, while selectively excluding defining attributes of these concepts for effective erasure. Extensive experiments demonstrate that AdvAnchor outperforms state-of-the-art methods. Our code is publicly available at https://anonymous.4open.science/r/AdvAnchor.

Mengnan Zhao, Lihe Zhang, Xingyi Yang, Tianhang Zheng, Baocai Yin1/3/2025

arXiv:2501.00169v1 Announce Type: new Abstract: Deep Learning experiments have critical requirements regarding the careful handling of their datasets as well as the efficient and correct usage of APIs that interact with hardware accelerators. On the one hand, software mistakes during data handling can contaminate experiments and lead to incorrect results. On the other hand, poorly coded APIs that interact with the hardware can lead to sub-optimal usage and untrustworthy conclusions. In this work we investigate the use of Linear Logic for the analysis of Deep Learning experiments. We show that primitives and operators of Linear Logic can be used to express: (i) an abstract representation of the control flow of an experiment, (ii) a set of available experimental resources, such as API calls to the underlying data-structures and hardware as well as (iii) reasoning rules about the correct consumption of resources during experiments. Our proposed model is not only lightweight but also easy to comprehend having both a symbolic and a visual component. Finally, its artifacts are themselves proofs in Linear Logic that can be readily verified by off-the-shelf reasoners.

Nick Papoulias1/3/2025