cs.AR

50 posts

arXiv:2501.06872v1 Announce Type: new Abstract: This paper investigates the shared-memory Graph Transposition (GT) problem, a fundamental graph algorithm that is widely used in graph analytics and scientific computing. Previous GT algorithms have significant memory requirements that are proportional to the number of vertices and threads which obstructs their use on large graphs. Moreover, atomic memory operations have become comparably fast on recent CPU architectures, which creates new opportunities for improving the performance of concurrent atomic accesses in GT. We design PoTra, a GT algorithm which leverages graph structure and processor and memory architecture to optimize locality and performance. PoTra limits the size of additional data structures close to CPU cache sizes and utilizes the skewed degree distribution of graph datasets to optimize locality and performance. We present the performance model of PoTra to explain the connection between cache and memory response times and graph locality. Our evaluation of PoTra on three CPU architectures and 20 real-world and synthetic graph datasets with up to 128 billion edges demonstrates that PoTra achieves up to 8.7 times speedup compared to previous works and if there is a performance loss it remains limited to 15.7%, on average.

Mohsen Koohi Esfahani, Hans Vandierendonck1/14/2025

arXiv:2411.06376v2 Announce Type: replace Abstract: Peripheral Component Interconnect Express (PCIe) is the de facto interconnect standard for high-speed peripherals and CPUs. Prototyping and optimizing PCIe devices for emerging scenarios is an ongoing challenge. Since Transaction Layer Packets (TLPs) capture device-CPU interactions, it is crucial to analyze and generate realistic TLP traces for effective device design and optimization. Generative AI offers a promising approach for creating intricate, custom TLP traces necessary for PCIe hardware and software development. However, existing models often generate impractical traces due to the absence of PCIe-specific constraints, such as TLP ordering and causality. This paper presents Phantom, the first framework that treats TLP trace generation as a generative AI problem while incorporating PCIe-specific constraints. We validate Phantom's effectiveness by generating TLP traces for an actual PCIe network interface card. Experimental results show that Phantom produces practical, large-scale TLP traces, significantly outperforming existing models, with improvements of up to 1000$\times$ in task-specific metrics and up to 2.19$\times$ in Frechet Inception Distance (FID) compared to backbone-only methods.

Zhibai Huang, Yihan Shen, Yongchen Xie, Zhixiang Wei, Yun wang, Fangxin Liu, Tao Song, Zhengwei Qi1/14/2025

arXiv:2501.06646v1 Announce Type: new Abstract: With lowering thresholds, transparently defending against Rowhammer within DRAM is challenging due to the lack of time to perform mitigation. Commercially deployed in-DRAM defenses like TRR that steal time from normal refreshes~(REF) to perform mitigation have been proven ineffective against Rowhammer. In response, a new Refresh Management (RFM) interface has been added to the DDR5 specifications. RFM provides dedicated time to an in-DRAM defense to perform mitigation. Several recent works have used RFM for the intended purpose - building better Rowhammer defenses. However, to the best of our knowledge, no prior study has looked at the potential security implications of this new feature if an attacker subjects it to intentional misuse. Our paper shows that RFM introduces new side effects in the system - the activity of one bank causes interference with the operation of the other banks. Thus, the latency of a bank becomes dependent on the activity of other banks. We use these side effects to build two new attacks. First, a novel memory-based covert channel, which has a bandwidth of up to 31.3 KB/s, and is also effective even in a bank-partitioned system. Second, a new Denial-of-Service (DOS) attack pattern that exploits the activity within a single bank to reduce the performance of the other banks. Our experiments on SPEC2017, PARSEC, and LIGRA workloads show a slowdown of up to 67\% when running alongside our DOS pattern. We also discuss potential countermeasures for our attacks.

Hritvik Taneja, Moinuddin Qureshi1/14/2025

arXiv:2501.06663v1 Announce Type: new Abstract: Transformer models have achieved state-of-the-art performance across a wide range of machine learning tasks. There is growing interest in training transformers on resource-constrained edge devices due to considerations such as privacy, domain adaptation, and on-device scientific machine learning. However, the significant computational and memory demands required for transformer training often exceed the capabilities of an edge device. Leveraging low-rank tensor compression, this paper presents the first on-FPGA accelerator for end-to-end transformer training. On the algorithm side, we present a bi-directional contraction flow for tensorized transformer training, significantly reducing the computational FLOPS and intra-layer memory costs compared to existing tensor operations. On the hardware side, we store all highly compressed model parameters and gradient information on chip, creating an on-chip-memory-only framework for each stage in training. This reduces off-chip communication and minimizes latency and energy costs. Additionally, we implement custom computing kernels for each training stage and employ intra-layer parallelism and pipe-lining to further enhance run-time and memory efficiency. Through experiments on transformer models within $36.7$ to $93.5$ MB using FP-32 data formats on the ATIS dataset, our tensorized FPGA accelerator could conduct single-batch end-to-end training on the AMD Alevo U50 FPGA, with a memory budget of less than $6$-MB BRAM and $22.5$-MB URAM. Compared to uncompressed training on the NVIDIA RTX 3090 GPU, our on-FPGA training achieves a memory reduction of $30\times$ to $51\times$. Our FPGA accelerator also achieves up to $3.6\times$ less energy cost per epoch compared with tensor Transformer training on an NVIDIA RTX 3090 GPU.

Jiayi Tian (Callie), Jinming Lu (Callie), Hai Li (Callie), Xiangwei Wang (Callie), Cong (Callie), Hao, Ian Young, Zheng Zhang1/14/2025

arXiv:2412.19925v2 Announce Type: replace Abstract: Large Language Models (LLMs) have revolutionized natural language processing by understanding and generating human-like text. However, the increasing demand for more sophisticated LLMs presents significant computational challenges due to their scale and complexity. This paper introduces Hardware Accelerated Decoding (HADES), a novel approach to enhance the performance and energy efficiency of LLMs. We address the design of an LLM accelerator with hardware-level speculative decoding support, a concept not previously explored in existing literature. Our work demonstrates how speculative decoding can significantly improve the efficiency of LLM operations, paving the way for more advanced and practical applications of these models.

Ze Yang, Yihong Jin, Xinhe Xu1/14/2025

arXiv:2412.06838v2 Announce Type: replace Abstract: Brains perform decision-making by Bayes theorem. The theorem quantifies events as probabilities and, based on probability rules, renders the decisions. Learning from this, Bayes theorem can be applied to enable efficient user-scene interactions. However, given the probabilistic nature, implementing Bayes theorem in hardware using conventional deterministic computing can incur excessive computational cost and decision latency. Though challenging, here we present a probabilistic computing approach based on memristors to implement the Bayes theorem. We integrate memristors with Boolean logics and, by exploiting the volatile stochastic switching of the memristors, realise probabilistic logic operations, key for hardware Bayes theorem implementation. To empirically validate the efficacy of the hardware Bayes theorem in user-scene interactions, we develop lightweight Bayesian inference and fusion hardware operators using the probabilistic logics and apply the operators in road scene parsing for self-driving, including route planning and obstacle detection. The results show our operators can achieve reliable decisions in less than 0.4 ms (or equivalently 2,500 fps), outperforming human decision-making and the existing driving assistance systems.

Lekai Song, Pengyu Liu, Yang Liu, Jingfang Pei, Wenyu Cui, Songwei Liu, Yingyi Wen, Teng Ma, Kong-Pang Pun, Leonard W. T. Ng, Guohua Hu1/14/2025

arXiv:2501.07047v1 Announce Type: new Abstract: Cloud-based services are making the outsourcing of sensitive client data increasingly common. Although homomorphic encryption (HE) offers strong privacy guarantee, it requires substantially more resources than computing on plaintext, often leading to unacceptably large latencies in getting the results. HE accelerators have emerged to mitigate this latency issue, but with the high cost of ASICs. In this paper we show that HE primitives can be converted to AI operators and accelerated on existing ASIC AI accelerators, like TPUs, which are already widely deployed in the cloud. Adapting such accelerators for HE requires (1) supporting modular multiplication, (2) high-precision arithmetic in software, and (3) efficient mapping on matrix engines. We introduce the CROSS compiler (1) to adopt Barrett reduction to provide modular reduction support using multiplier and adder, (2) Basis Aligned Transformation (BAT) to convert high-precision multiplication as low-precision matrix-vector multiplication, (3) Matrix Aligned Transformation (MAT) to covert vectorized modular operation with reduction into matrix multiplication that can be efficiently processed on 2D spatial matrix engine. Our evaluation of CROSS on a Google TPUv4 demonstrates significant performance improvements, with up to 161x and 5x speedup compared to the previous work on many-core CPUs and V100. The kernel-level codes are open-sourced at https://github.com/google/jaxite.git.

Jianming Tong, Tianhao Huang, Leo de Castro, Anirudh Itagi, Jingtian Dang, Anupam Golder, Asra Ali, Jevin Jiang, Arvind, G. Edward Suh, Tushar Krishna1/14/2025

arXiv:2501.06780v1 Announce Type: new Abstract: Recently, crossbar array based in-memory accelerators have been gaining interest due to their high throughput and energy efficiency. While software and compiler support for the in-memory accelerators has also been introduced, they are currently limited to the case where all weights are assumed to be on-chip. This limitation becomes apparent with the significantly increasing network sizes compared to the in-memory footprint. Weight replacement schemes are essential to address this issue. We propose COMPASS, a compiler framework for resource-constrained crossbar-based processing-in-memory (PIM) deep neural network (DNN) accelerators. COMPASS is specially targeted for networks that exceed the capacity of PIM crossbar arrays, necessitating access to external memories. We propose an algorithm to determine the optimal partitioning that divides the layers so that each partition can be accelerated on chip. Our scheme takes into account the data dependence between layers, core utilization, and the number of write instructions to minimize latency, memory accesses, and improve energy efficiency. Simulation results demonstrate that COMPASS can accommodate much more networks using a minimal memory footprint, while improving throughput by 1.78X and providing 1.28X savings in energy-delay product (EDP) over baseline partitioning methods.

Jihoon Park, Jeongin Choe, Dohyun Kim, Jae-Joon Kim1/14/2025

arXiv:2501.07330v1 Announce Type: new Abstract: ML and HPC applications increasingly combine dense and sparse memory access computations to maximize storage efficiency. However, existing CPUs and GPUs struggle to flexibly handle these heterogeneous workloads with consistently high compute efficiency. We present Occamy, a 432-Core, 768-DP-GFLOP/s, dual-HBM2E, dual-chiplet RISC-V system with a latency-tolerant hierarchical interconnect and in-core streaming units (SUs) designed to accelerate dense and sparse FP8-to-FP64 ML and HPC workloads. We implement Occamy's compute chiplets in 12 nm FinFET, and its passive interposer, Hedwig, in a 65 nm node. On dense linear algebra (LA), Occamy achieves a competitive FPU utilization of 89%. On stencil codes, Occamy reaches an FPU utilization of 83% and a technology-node-normalized compute density of 11.1 DP-GFLOP/s/mm2,leading state-of-the-art (SoA) processors by 1.7x and 1.2x, respectively. On sparse-dense linear algebra (LA), it achieves 42% FPU utilization and a normalized compute density of 5.95 DP-GFLOP/s/mm2, surpassing the SoA by 5.2x and 11x, respectively. On, sparse-sparse LA, Occamy reaches a throughput of up to 187 GCOMP/s at 17.4 GCOMP/s/W and a compute density of 3.63 GCOMP/s/mm2. Finally, we reach up to 75% and 54% FPU utilization on and dense (LLM) and graph-sparse (GCN) ML inference workloads. Occamy's RTL is freely available under a permissive open-source license.

Paul Scheffler, Thomas Benz, Viviane Potocnik, Tim Fischer, Luca Colagrande, Nils Wistoff, Yichao Zhang, Luca Bertaccini, Gianmarco Ottavi, Manuel Eggimann, Matheus Cavalcante, Gianna Paulin, Frank K. G\"urkaynak, Davide Rossi, Luca Benini1/14/2025

arXiv:2501.07148v1 Announce Type: new Abstract: Bandwidth constraints limit LoRa implementations. Contemporary IoT applications require higher throughput than that provided by LoRa. This work introduces a LoRa Multiple Input Multiple Output (MIMO) system and a spatial multiplexing algorithm to address LoRa's bandwidth limitation. The transceivers in the proposed approach modulate the signals on distinct frequencies of the same LoRa band. A Frequency Division Multiplexing (FDM) method is used at the transmitters to provide a wider MIMO channel. Unlike conventional Orthogonal Frequency Division Multiplexing (OFDM) techniques, this work exploits the orthogonality of the LoRa signals facilitated by its proprietary Chirp Spread Spectrum (CSS) modulation to perform an OFDM in the proposed LoRa MIMO system. By varying the Spreading Factor (SF) and bandwidth of LoRa signals, orthogonal signals can transmit on the same frequency irrespective of the FDM. Even though the channel correlation is minimal for different spreading factors and bandwidths, different Carrier Frequencies (CF) ensure the signals do not overlap and provide additional degrees of freedom. This work assesses the proposed model's performance and conducts an extensive analysis to provide an overview of resources consumed by the proposed system. Finally, this work provides the detailed results of a thorough evaluation of the model on test hardware.

Atonu Ghosh, Sharath Chandan, Sudip Misra1/14/2025

arXiv:2311.02029v4 Announce Type: replace-cross Abstract: Metagenomics, the study of genome sequences of diverse organisms cohabiting in a shared environment, has experienced significant advancements across various medical and biological fields. Metagenomic analysis is crucial, for instance, in clinical applications such as infectious disease screening and the diagnosis and early detection of diseases such as cancer. A key task in metagenomics is to determine the species present in a sample and their relative abundances. Currently, the field is dominated by either alignment-based tools, which offer high accuracy but are computationally expensive, or alignment-free tools, which are fast but lack the needed accuracy for many applications. In response to this dichotomy, we introduce MetaTrinity, a tool based on heuristics, to achieve a fundamental improvement in accuracy-runtime tradeoff over existing methods. We benchmark MetaTrinity against two leading metagenomic classifiers, each representing different ends of the performance-accuracy spectrum. On one end, Kraken2, a tool optimized for performance, shows modest accuracy yet a rapid runtime. The other end of the spectrum is governed by Metalign, a tool optimized for accuracy. Our evaluations show that MetaTrinity achieves an accuracy comparable to Metalign while gaining a 4x speedup without any loss in accuracy. This directly equates to a fourfold improvement in runtime-accuracy tradeoff. Compared to Kraken2, MetaTrinity requires a 5x longer runtime yet delivers a 17x improvement in accuracy. This demonstrates a 3.4x enhancement in the accuracy-runtime tradeoff for MetaTrinity. This dual comparison positions MetaTrinity as a broadly applicable solution for metagenomic classification, combining advantages of both ends of the spectrum: speed and accuracy. MetaTrinity is publicly available at https://github.com/CMU-SAFARI/MetaTrinity.

Arvid E. Gollwitzer, Mohammed Alser, Joel Bergtholdt, Joel Lindegger, Maximilian-David Rumpf, Can Firtina, Serghei Mangul, Onur Mutlu1/8/2025

arXiv:2501.03245v1 Announce Type: new Abstract: Elliptic Curve Cryptography (ECC) is an encryption method that provides security comparable to traditional techniques like Rivest-Shamir-Adleman (RSA) but with lower computational complexity and smaller key sizes, making it a competitive option for applications such as blockchain, secure multi-party computation, and database security. However, the throughput of ECC is still hindered by the significant performance overhead associated with elliptic curve (EC) operations. This paper presents gECC, a versatile framework for ECC optimized for GPU architectures, specifically engineered to achieve high-throughput performance in EC operations. gECC incorporates batch-based execution of EC operations and microarchitecture-level optimization of modular arithmetic. It employs Montgomery's trick to enable batch EC computation and incorporates novel computation parallelization and memory management techniques to maximize the computation parallelism and minimize the access overhead of GPU global memory. Also, we analyze the primary bottleneck in modular multiplication by investigating how the user codes of modular multiplication are compiled into hardware instructions and what these instructions' issuance rates are. We identify that the efficiency of modular multiplication is highly dependent on the number of Integer Multiply-Add (IMAD) instructions. To eliminate this bottleneck, we propose techniques to minimize the number of IMAD instructions by leveraging predicate registers to pass the carry information and using addition and subtraction instructions (IADD3) to replace IMAD instructions. Our results show that, for ECDSA and ECDH, gECC can achieve performance improvements of 5.56x and 4.94x, respectively, compared to the state-of-the-art GPU-based system. In a real-world blockchain application, we can achieve performance improvements of 1.56x, compared to the state-of-the-art CPU-based system.

Qian Xiong, Weiliang Ma, Xuanhua Shi, Yongluan Zhou, Hai Jin, Kaiyi Huang, Haozhou Wang, Zhengru Wang1/8/2025

arXiv:2501.01892v1 Announce Type: new Abstract: We introduce QuArch, a dataset of 1500 human-validated question-answer pairs designed to evaluate and enhance language models' understanding of computer architecture. The dataset covers areas including processor design, memory systems, and performance optimization. Our analysis highlights a significant performance gap: the best closed-source model achieves 84% accuracy, while the top small open-source model reaches 72%. We observe notable struggles in memory systems, interconnection networks, and benchmarking. Fine-tuning with QuArch improves small model accuracy by up to 8%, establishing a foundation for advancing AI-driven computer architecture research. The dataset and leaderboard are at https://harvard-edge.github.io/QuArch/.

Shvetank Prakash, Andrew Cheng, Jason Yik, Arya Tschand, Radhika Ghosal, Ikechukwu Uchendu, Jessica Quaye, Jeffrey Ma, Shreyas Grampurohit, Sofia Giannuzzi, Arnav Balyan, Fin Amin, Aadya Pipersenia, Yash Choudhary, Ankita Nayak, Amir Yazdanbakhsh, Vijay Janapa Reddi1/6/2025

arXiv:2501.01534v1 Announce Type: new Abstract: We demonstrate how dynamic verification (e.g. simulation) can be replaced by deductive formal verification and how to benefit from the advantages of symbolic verification and the reuse of verification proofs. To do this, we swap the well-known module-hierarchy based concept with a transaction-level (TL) based alternative, which still allows us to describe the design as precisely as on RTL. We enhance the aspect-oriented and TL oriented language PDVL to support the definition of functional coverage (FC) and assertions at all levels of a TL-hierarchy. We then show how to use a deductive formal verification (DFV) flow which compiles PDVL code into Gallina code to be used by the Coq theorem prover. It can be argued that FC can be converted into proof obligations and that proving them is equivalent to 100\% coverage. We also demonstrate how lower-level proofs can be reused when verifying aspects at higher-levels of a TL-hierarchy. We argue that the traditional assertion-based verification (ABV) methodology is still supported and SVA can be proven using DFV.

Tobias Strauch1/6/2025

arXiv:2501.01511v1 Announce Type: new Abstract: Accelerating machine learning inference has been an active research area in recent years. In this context, field-programmable gate arrays (FPGAs) have demonstrated compelling performance by providing massive parallelism in deep neural networks (DNNs). Neural networks (NNs) are computationally intensive during inference, as they require massive amounts of multiplication and addition, which makes their implementations costly. Numerous studies have recently addressed this challenge to some extent using a combination of sparsity induction, quantization, and transformation of neurons or sub-networks into lookup tables (LUTs) on FPGAs. Gradient boosted decision trees (GBDTs) are a high-accuracy alternative to DNNs in a wide range of regression and classification tasks, particularly for tabular datasets. The basic building block of GBDTs is a decision tree, which resembles the structure of binary decision diagrams. FPGA design flows are heavily optimized to implement such a structure efficiently. In addition to decision trees, GBDTs perform simple operations during inference, including comparison and addition. We present TreeLUT as an open-source tool for implementing GBDTs using an efficient quantization scheme, hardware architecture, and pipelining strategy. It primarily utilizes LUTs with no BRAMs or DSPs on FPGAs, resulting in high efficiency. We show the effectiveness of TreeLUT using multiple classification datasets, commonly used to evaluate ultra-low area and latency architectures. Using these benchmarks, we compare our implementation results with existing DNN and GBDT methods, such as DWN, PolyLUT-Add, NeuraLUT, LogicNets, FINN, hls4ml, and others. Our results show that TreeLUT significantly improves hardware utilization, latency, and throughput at competitive accuracy compared to previous works.

Alireza Khataei, Kia Bazargan1/6/2025

arXiv:2412.15021v2 Announce Type: replace Abstract: Neuromorphic computing aims to replicate the brain's capabilities for energy efficient and parallel information processing, promising a solution to the increasing demand for faster and more efficient computational systems. Efficient training of neural networks on neuromorphic hardware requires the development of training algorithms that retain the sparsity of spike-based communication during training. Here, we report on the first implementation of event-based backpropagation on the SpiNNaker2 neuromorphic hardware platform. We use EventProp, an algorithm for event-based backpropagation in spiking neural networks (SNNs), to compute exact gradients using sparse communication of error signals between neurons. Our implementation computes multi-layer networks of leaky integrate-and-fire neurons using discretized versions of the differential equations and their adjoints, and uses event packets to transmit spikes and error signals between network layers. We demonstrate a proof-of-concept of batch-parallelized, on-chip training of SNNs using the Yin Yang dataset, and provide an off-chip implementation for efficient prototyping, hyper-parameter search, and hybrid training methods.

Gabriel B\'ena, Timo Wunderlich, Mahmoud Akl, Bernhard Vogginger, Christian Mayr, Hector Andres Gonzales1/6/2025

arXiv:2501.01737v1 Announce Type: new Abstract: Digit-serial arithmetic has emerged as a viable approach for designing hardware accelerators, reducing interconnections, area utilization, and power consumption. However, conventional methods suffer from performance and latency issues. To address these challenges, we propose an accelerator design using left-to-right (LR) arithmetic, which performs computations in a most-significant digit first (MSDF) manner, enabling digit-level pipelining. This leads to substantial performance improvements and reduced latency. The processing engine is designed for convolutional neural networks (CNNs), which includes low-latency LR multipliers and adders for digit-level parallelism. The proposed DSLR-CNN is implemented in Verilog and synthesized with Synopsys design compiler using GSCL 45nm technology, the DSLR-CNN accelerator was evaluated on AlexNet, VGG-16, and ResNet-18 networks. Results show significant improvements across key performance evaluation metrics, including response time, peak performance, power consumption, operational intensity, area efficiency, and energy efficiency. The peak performance measured in GOPS of the proposed design is 4.37x to 569.11x higher than contemporary designs, and it achieved 3.58x to 44.75x higher peak energy efficiency (TOPS/W), outperforming conventional bit-serial designs.

Malik Zohaib Nisar, Muhammad Sohail Ibrahim, Saeid Gorgin, Muhammad Usman, Jeong-A Lee1/6/2025

arXiv:2501.01841v1 Announce Type: new Abstract: Reducing computational costs is an important issue for development of embedded systems. Binary-weight Neural Networks (BNNs), in which weights are binarized and activations are quantized, are employed to reduce computational costs of various kinds of applications. In this paper, a design methodology of hardware architecture for inference engines is proposed to handle modern BNNs with two operation modes. Multiply-Accumulate (MAC) operations can be simplified by replacing multiply operations with bitwise operations. The proposed method can effectively reduce the gate count of inference engines by removing a part of computational costs from the hardware system. The architecture of MAC operations can calculate the inference results of BNNs efficiently with only 52% of hardware costs compared with the related works. To show that the inference engine can handle practical applications, two lightweight networks which combine the backbones of SegNeXt and the decoder of SparseInst for instance segmentation are also proposed. The output results of the lightweight networks are computed using only bitwise operations and add operations. The proposed inference engine has lower hardware costs than related works. The experimental results show that the proposed inference engine can handle the proposed instance-segmentation networks and achieves higher accuracy than YOLACT on the "Person" category although the model size is 77.7$\times$ smaller compared with YOLACT.

Tse-Wei Chen, Wei Tao, Dongyue Zhao, Kazuhiro Mima, Tadayuki Ito, Kinya Osa, Masami Kato1/6/2025

arXiv:2501.01586v1 Announce Type: new Abstract: In-memory analog matrix computing (AMC) with resistive random-access memory (RRAM) represents a highly promising solution that solves matrix problems in one step. However, the existing AMC circuits each have a specific connection topology to implement a single computing function, lack of the universality as a matrix processor. In this work, we design a reconfigurable AMC macro for general-purpose matrix computations, which is achieved by configuring proper connections between memory array and amplifier circuits. Based on this macro, we develop a hybrid system that incorporates an on-chip write-verify scheme and digital functional modules, to deliver a general-purpose AMC solver for various applications.

Lunshuai Pan, Shiqing Wang, Pushen Zuo, Zhong Sun1/6/2025

arXiv:2501.00210v1 Announce Type: new Abstract: With the rise of AI, NVIDIA GPUs have become the de facto standard for AI system design. This paper presents a comprehensive evaluation of Intel Gaudi NPUs as an alternative to NVIDIA GPUs for AI model serving. First, we create a suite of microbenchmarks to compare Intel Gaudi-2 with NVIDIA A100, showing that Gaudi-2 achieves competitive performance not only in primitive AI compute, memory, and communication operations but also in executing several important AI workloads end-to-end. We then assess Gaudi NPU's programmability by discussing several software-level optimization strategies to employ for implementing critical FBGEMM operators and vLLM, evaluating their efficiency against GPU-optimized counterparts. Results indicate that Gaudi-2 achieves energy efficiency comparable to A100, though there are notable areas for improvement in terms of software maturity. Overall, we conclude that, with effective integration into high-level AI frameworks, Gaudi NPUs could challenge NVIDIA GPU's dominance in the AI server market, though further improvements are necessary to fully compete with NVIDIA's robust software ecosystem.

Yunjae Lee, Juntaek Lim, Jehyeon Bang, Eunyeong Cho, Huijong Jeong, Taesu Kim, Hyungjun Kim, Joonhyung Lee, Jinseop Im, Ranggi Hwang, Se Jung Kwon, Dongsoo Lee, Minsoo Rhu1/3/2025