cs.CV
905 postsarXiv:2501.00265v1 Announce Type: new Abstract: Robust training of machine learning models in the presence of outliers has garnered attention across various domains. The use of robust losses is a popular approach and is known to mitigate the impact of outliers. We bring to light two literatures that have diverged in their ways of designing robust losses: one using M-estimation, which is popular in robotics and computer vision, and another using a risk-minimization framework, which is popular in deep learning. We first show that a simple modification of the Black-Rangarajan duality provides a unifying view. The modified duality brings out a definition of a robust loss kernel $\sigma$ that is satisfied by robust losses in both the literatures. Secondly, using the modified duality, we propose an Adaptive Alternation Algorithm (AAA) for training machine learning models with outliers. The algorithm iteratively trains the model by using a weighted version of the non-robust loss, while updating the weights at each iteration. The algorithm is augmented with a novel parameter update rule by interpreting the weights as inlier probabilities, and obviates the need for complex parameter tuning. Thirdly, we investigate convergence of the adaptive alternation algorithm to outlier-free optima. Considering arbitrary outliers (i.e., with no distributional assumption on the outliers), we show that the use of robust loss kernels {\sigma} increases the region of convergence. We experimentally show the efficacy of our algorithm on regression, classification, and neural scene reconstruction problems. We release our implementation code: https://github.com/MIT-SPARK/ORT.
arXiv:2501.00318v1 Announce Type: new Abstract: Text-based person search is the task of finding person images that are the most relevant to the natural language text description given as query. The main challenge of this task is a large gap between the target images and text queries, which makes it difficult to establish correspondence and distinguish subtle differences across people. To address this challenge, we introduce an efficient encoder-decoder model that extracts coarse-to-fine embedding vectors which are semantically aligned across the two modalities without supervision for the alignment. There is another challenge of learning to capture fine-grained information with only person IDs as supervision, where similar body parts of different individuals are considered different due to the lack of part-level supervision. To tackle this, we propose a novel ranking loss, dubbed commonality-based margin ranking loss, which quantifies the degree of commonality of each body part and reflects it during the learning of fine-grained body part details. As a consequence, it enables our method to achieve the best records on three public benchmarks.
arXiv:2501.00184v1 Announce Type: new Abstract: Trajectory prediction aims to estimate an entity's future path using its current position and historical movement data, benefiting fields like autonomous navigation, robotics, and human movement analytics. Deep learning approaches have become key in this area, utilizing large-scale trajectory datasets to model movement patterns, but face challenges in managing complex spatial dependencies and adapting to dynamic environments. To address these challenges, we introduce TrajLearn, a novel model for trajectory prediction that leverages generative modeling of higher-order mobility flows based on hexagonal spatial representation. TrajLearn predicts the next $k$ steps by integrating a customized beam search for exploring multiple potential paths while maintaining spatial continuity. We conducted a rigorous evaluation of TrajLearn, benchmarking it against leading state-of-the-art approaches and meaningful baselines. The results indicate that TrajLearn achieves significant performance gains, with improvements of up to ~40% across multiple real-world trajectory datasets. In addition, we evaluated different prediction horizons (i.e., various values of $k$), conducted resolution sensitivity analysis, and performed ablation studies to assess the impact of key model components. Furthermore, we developed a novel algorithm to generate mixed-resolution maps by hierarchically subdividing hexagonal regions into finer segments within a specified observation area. This approach supports selective detailing, applying finer resolution to areas of interest or high activity (e.g., urban centers) while using coarser resolution for less significant regions (e.g., rural areas), effectively reducing data storage requirements and computational overhead. We promote reproducibility and adaptability by offering complete code, data, and detailed documentation with flexible configuration options for various applications.
arXiv:2501.00243v1 Announce Type: new Abstract: Ultra-fine-grained image recognition (UFGIR) is a challenging task that involves classifying images within a macro-category. While traditional FGIR deals with classifying different species, UFGIR goes beyond by classifying sub-categories within a species such as cultivars of a plant. In recent times the usage of Vision Transformer-based backbones has allowed methods to obtain outstanding recognition performances in this task but this comes at a significant cost in terms of computation specially since this task significantly benefits from incorporating higher resolution images. Therefore, techniques such as token reduction have emerged to reduce the computational cost. However, dropping tokens leads to loss of essential information for fine-grained categories, specially as the token keep rate is reduced. Therefore, to counteract the loss of information brought by the usage of token reduction we propose a novel Cross-Layer Aggregation Classification Head and a Cross-Layer Cache mechanism to recover and access information from previous layers in later locations. Extensive experiments covering more than 2000 runs across diverse settings including 5 datasets, 9 backbones, 7 token reduction methods, 5 keep rates, and 2 image sizes demonstrate the effectiveness of the proposed plug-and-play modules and allow us to push the boundaries of accuracy vs cost for UFGIR by reducing the kept tokens to extremely low ratios of up to 10\% while maintaining a competitive accuracy to state-of-the-art models. Code is available at: \url{https://github.com/arkel23/CLCA}
arXiv:2501.00300v1 Announce Type: new Abstract: The key to ensuring the safe obstacle avoidance function of autonomous driving systems lies in the use of extremely accurate vehicle recognition techniques. However, the variability of the actual road environment and the diverse characteristics of vehicles and pedestrians together constitute a huge obstacle to improving detection accuracy, posing a serious challenge to the realization of this goal. To address the above issues, this paper proposes an improved YOLOv8 vehicle detection method. Specifically, taking the YOLOv8n-seg model as the base model, firstly, the FasterNet network is used to replace the backbone network to achieve the purpose of reducing the computational complexity and memory while improving the detection accuracy and speed; secondly, the feature enhancement is achieved by adding the attention mechanism CBAM to the Neck; and lastly, the loss function CIoU is modified to WIoU, which optimizes the detection box localization while improving the segmentation accuracy. The results show that the improved model achieves 98.3%, 89.1% and 88.4% detection accuracy for car, Person and Motorcycle. Compared with the pre-improvement and YOLOv9 models in six metrics such as Precision.
arXiv:2501.00317v1 Announce Type: new Abstract: Human motion prediction (HMP) involves forecasting future human motion based on historical data. Graph Convolutional Networks (GCNs) have garnered widespread attention in this field for their proficiency in capturing relationships among joints in human motion. However, existing GCN-based methods tend to focus on either temporal-domain or spatial-domain features, or they combine spatio-temporal features without fully leveraging the complementarity and cross-dependency of these two features. In this paper, we propose the Spatial-Temporal Multi-Subgraph Graph Convolutional Network (STMS-GCN) to capture complex spatio-temporal dependencies in human motion. Specifically, we decouple the modeling of temporal and spatial dependencies, enabling cross-domain knowledge transfer at multiple scales through a spatio-temporal information consistency constraint mechanism. Besides, we utilize multiple subgraphs to extract richer motion information and enhance the learning associations of diverse subgraphs through a homogeneous information constraint mechanism. Extensive experiments on the standard HMP benchmarks demonstrate the superiority of our method.
arXiv:2501.00116v1 Announce Type: new Abstract: Generating desired images conditioned on given text descriptions has received lots of attention. Recently, diffusion models and autoregressive models have demonstrated their outstanding expressivity and gradually replaced GAN as the favored architectures for text-to-image synthesis. However, they still face some obstacles: slow inference speed and expensive training costs. To achieve more powerful and faster text-to-image synthesis under complex scenes, we propose TIGER, a text-to-image GAN with pretrained representations. To be specific, we propose a vision-empowered discriminator and a high-capacity generator. (i) The vision-empowered discriminator absorbs the complex scene understanding ability and the domain generalization ability from pretrained vision models to enhance model performance. Unlike previous works, we explore stacking multiple pretrained models in our discriminator to collect multiple different representations. (ii) The high-capacity generator aims to achieve effective text-image fusion while increasing the model capacity. The high-capacity generator consists of multiple novel high-capacity fusion blocks (HFBlock). And the HFBlock contains several deep fusion modules and a global fusion module, which play different roles to benefit our model. Extensive experiments demonstrate the outstanding performance of our proposed TIGER both on standard and zero-shot text-to-image synthesis tasks. On the standard text-to-image synthesis task, TIGER achieves state-of-the-art performance on two challenging datasets, which obtain a new FID 5.48 (COCO) and 9.38 (CUB). On the zero-shot text-to-image synthesis task, we achieve comparable performance with fewer model parameters, smaller training data size and faster inference speed. Additionally, more experiments and analyses are conducted in the Supplementary Material.
arXiv:2501.00142v1 Announce Type: new Abstract: A minimalist vision system uses the smallest number of pixels needed to solve a vision task. While traditional cameras use a large grid of square pixels, a minimalist camera uses freeform pixels that can take on arbitrary shapes to increase their information content. We show that the hardware of a minimalist camera can be modeled as the first layer of a neural network, where the subsequent layers are used for inference. Training the network for any given task yields the shapes of the camera's freeform pixels, each of which is implemented using a photodetector and an optical mask. We have designed minimalist cameras for monitoring indoor spaces (with 8 pixels), measuring room lighting (with 8 pixels), and estimating traffic flow (with 8 pixels). The performance demonstrated by these systems is on par with a traditional camera with orders of magnitude more pixels. Minimalist vision has two major advantages. First, it naturally tends to preserve the privacy of individuals in the scene since the captured information is inadequate for extracting visual details. Second, since the number of measurements made by a minimalist camera is very small, we show that it can be fully self-powered, i.e., function without an external power supply or a battery.
arXiv:2501.00220v1 Announce Type: new Abstract: Lidars and cameras play essential roles in autonomous driving, offering complementary information for 3D detection. The state-of-the-art fusion methods integrate them at the feature level, but they mostly rely on the learned soft association between point clouds and images, which lacks interpretability and neglects the hard association between them. In this paper, we combine feature-level fusion with point-level fusion, using hard association established by the calibration matrices to guide the generation of object queries. Specifically, in the early fusion stage, we use the 2D CNN features of images to decorate the point cloud data, and employ two independent sparse convolutions to extract the decorated point cloud features. In the mid-level fusion stage, we initialize the queries with a center heatmap and embed the predicted class labels as auxiliary information into the queries, making the initial positions closer to the actual centers of the targets. Extensive experiments conducted on two popular datasets, i.e. KITTI, Waymo, demonstrate the superiority of DecoratingFusion.
arXiv:2501.00237v1 Announce Type: new Abstract: In the realm of class-incremental learning (CIL), alleviating the catastrophic forgetting problem is a pivotal challenge. This paper discovers a counter-intuitive observation: by incorporating domain shift into CIL tasks, the forgetting rate is significantly reduced. Our comprehensive studies demonstrate that incorporating domain shift leads to a clearer separation in the feature distribution across tasks and helps reduce parameter interference during the learning process. Inspired by this observation, we propose a simple yet effective method named DisCo to deal with CIL tasks. DisCo introduces a lightweight prototype pool that utilizes contrastive learning to promote distinct feature distributions for the current task relative to previous ones, effectively mitigating interference across tasks. DisCo can be easily integrated into existing state-of-the-art class-incremental learning methods. Experimental results show that incorporating our method into various CIL methods achieves substantial performance improvements, validating the benefits of our approach in enhancing class-incremental learning by separating feature representation and reducing interference. These findings illustrate that DisCo can serve as a robust fashion for future research in class-incremental learning.
arXiv:2501.00289v1 Announce Type: new Abstract: Diffusion models have gained tremendous success in text-to-image generation, yet still lag behind with visual understanding tasks, an area dominated by autoregressive vision-language models. We propose a large-scale and fully end-to-end diffusion model for multi-modal understanding and generation that significantly improves on existing diffusion-based multimodal models, and is the first of its kind to support the full suite of vision-language modeling capabilities. Inspired by the multimodal diffusion transformer (MM-DiT) and recent advances in discrete diffusion language modeling, we leverage a cross-modal maximum likelihood estimation framework that simultaneously trains the conditional likelihoods of both images and text jointly under a single loss function, which is back-propagated through both branches of the diffusion transformer. The resulting model is highly flexible and capable of a wide range of tasks including image generation, captioning, and visual question answering. Our model attained competitive performance compared to recent unified image understanding and generation models, demonstrating the potential of multimodal diffusion modeling as a promising alternative to autoregressive next-token prediction models.
arXiv:2501.00296v1 Announce Type: new Abstract: Our aim is to learn to solve long-horizon decision-making problems in highly-variable, combinatorially-complex robotics domains given raw sensor input in the form of images. Previous work has shown that one way to achieve this aim is to learn a structured abstract transition model in the form of symbolic predicates and operators, and then plan within this model to solve novel tasks at test time. However, these learned models do not ground directly into pixels from just a handful of demonstrations. In this work, we propose to invent predicates that operate directly over input images by leveraging the capabilities of pretrained vision-language models (VLMs). Our key idea is that, given a set of demonstrations, a VLM can be used to propose a set of predicates that are potentially relevant for decision-making and then to determine the truth values of these predicates in both the given demonstrations and new image inputs. We build upon an existing framework for predicate invention, which generates feature-based predicates operating on object-centric states, to also generate visual predicates that operate on images. Experimentally, we show that our approach -- pix2pred -- is able to invent semantically meaningful predicates that enable generalization to novel, complex, and long-horizon tasks across two simulated robotic environments.
arXiv:2501.00303v1 Announce Type: new Abstract: The primary challenge of cross-domain few-shot segmentation (CD-FSS) is the domain disparity between the training and inference phases, which can exist in either the input data or the target classes. Previous models struggle to learn feature representations that generalize to various unknown domains from limited training domain samples. In contrast, the large-scale visual model SAM, pre-trained on tens of millions of images from various domains and classes, possesses excellent generalizability. In this work, we propose a SAM-aware graph prompt reasoning network (GPRN) that fully leverages SAM to guide CD-FSS feature representation learning and improve prediction accuracy. Specifically, we propose a SAM-aware prompt initialization module (SPI) to transform the masks generated by SAM into visual prompts enriched with high-level semantic information. Since SAM tends to divide an object into many sub-regions, this may lead to visual prompts representing the same semantic object having inconsistent or fragmented features. We further propose a graph prompt reasoning (GPR) module that constructs a graph among visual prompts to reason about their interrelationships and enable each visual prompt to aggregate information from similar prompts, thus achieving global semantic consistency. Subsequently, each visual prompt embeds its semantic information into the corresponding mask region to assist in feature representation learning. To refine the segmentation mask during testing, we also design a non-parameter adaptive point selection module (APS) to select representative point prompts from query predictions and feed them back to SAM to refine inaccurate segmentation results. Experiments on four standard CD-FSS datasets demonstrate that our method establishes new state-of-the-art results. Code: https://github.com/CVL-hub/GPRN.
arXiv:2501.00315v1 Announce Type: new Abstract: Exploring the bridge between historical and future motion behaviors remains a central challenge in human motion prediction. While most existing methods incorporate a reconstruction task as an auxiliary task into the decoder, thereby improving the modeling of spatio-temporal dependencies, they overlook the potential conflicts between reconstruction and prediction tasks. In this paper, we propose a novel approach: Temporal Decoupling Decoding with Inverse Processing (\textbf{$TD^2IP$}). Our method strategically separates reconstruction and prediction decoding processes, employing distinct decoders to decode the shared motion features into historical or future sequences. Additionally, inverse processing reverses motion information in the temporal dimension and reintroduces it into the model, leveraging the bidirectional temporal correlation of human motion behaviors. By alleviating the conflicts between reconstruction and prediction tasks and enhancing the association of historical and future information, \textbf{$TD^2IP$} fosters a deeper understanding of motion patterns. Extensive experiments demonstrate the adaptability of our method within existing methods.
arXiv:2501.00057v1 Announce Type: new Abstract: Although deep learning models have had great success in natural language processing and computer vision, we do not observe comparable improvements in the case of tabular data, which is still the most common data type used in biological, industrial and financial applications. In particular, it is challenging to transfer large-scale pre-trained models to downstream tasks defined on small tabular datasets. To address this, we propose VisTabNet -- a cross-modal transfer learning method, which allows for adapting Vision Transformer (ViT) with pre-trained weights to process tabular data. By projecting tabular inputs to patch embeddings acceptable by ViT, we can directly apply a pre-trained Transformer Encoder to tabular inputs. This approach eliminates the conceptual cost of designing a suitable architecture for processing tabular data, while reducing the computational cost of training the model from scratch. Experimental results on multiple small tabular datasets (less than 1k samples) demonstrate VisTabNet's superiority, outperforming both traditional ensemble methods and recent deep learning models. The proposed method goes beyond conventional transfer learning practice and shows that pre-trained image models can be transferred to solve tabular problems, extending the boundaries of transfer learning.
arXiv:2501.00103v1 Announce Type: new Abstract: We introduce LTX-Video, a transformer-based latent diffusion model that adopts a holistic approach to video generation by seamlessly integrating the responsibilities of the Video-VAE and the denoising transformer. Unlike existing methods, which treat these components as independent, LTX-Video aims to optimize their interaction for improved efficiency and quality. At its core is a carefully designed Video-VAE that achieves a high compression ratio of 1:192, with spatiotemporal downscaling of 32 x 32 x 8 pixels per token, enabled by relocating the patchifying operation from the transformer's input to the VAE's input. Operating in this highly compressed latent space enables the transformer to efficiently perform full spatiotemporal self-attention, which is essential for generating high-resolution videos with temporal consistency. However, the high compression inherently limits the representation of fine details. To address this, our VAE decoder is tasked with both latent-to-pixel conversion and the final denoising step, producing the clean result directly in pixel space. This approach preserves the ability to generate fine details without incurring the runtime cost of a separate upsampling module. Our model supports diverse use cases, including text-to-video and image-to-video generation, with both capabilities trained simultaneously. It achieves faster-than-real-time generation, producing 5 seconds of 24 fps video at 768x512 resolution in just 2 seconds on an Nvidia H100 GPU, outperforming all existing models of similar scale. The source code and pre-trained models are publicly available, setting a new benchmark for accessible and scalable video generation.
arXiv:2501.00124v1 Announce Type: new Abstract: Diffusionmodels(DMs)havedemonstratedremarkableachievements in synthesizing images of high fidelity and diversity. However, the extensive computational requirements and slow generative speed of diffusion models have limited their widespread adoption. In this paper, we propose a novel post-training quantization for diffusion models (PQD), which is a time-aware optimization framework for diffusion models based on post-training quantization. The proposed framework optimizes the inference process by selecting representative samples and conducting time-aware calibration. Experimental results show that our proposed method is able to directly quantize full-precision diffusion models into 8-bit or 4-bit models while maintaining comparable performance in a training-free manner, achieving a few FID change on ImageNet for unconditional image generation. Our approach demonstrates compatibility and can also be applied to 512x512 text-guided image generation for the first time.
arXiv:2501.00136v1 Announce Type: new Abstract: One of the challenging tasks in the field of video understanding is extracting semantic content from video inputs. Most existing systems use language models to describe videos in natural language sentences, but this has several major shortcomings. Such systems can rely too heavily on the language model component and base their output on statistical regularities in natural language text rather than on the visual contents of the video. Additionally, natural language annotations cannot be readily processed by a computer, are difficult to evaluate with performance metrics and cannot be easily translated into a different natural language. In this paper, we propose a method to annotate videos with knowledge graphs, and so avoid these problems. Specifically, we propose a deep-learning-based model for this task that first predicts pairs of individuals and then the relations between them. Additionally, we propose an extension of our model for the inclusion of background knowledge in the construction of knowledge graphs.
arXiv:2501.00192v1 Announce Type: new Abstract: Image content safety has become a significant challenge with the rise of visual media on online platforms. Meanwhile, in the age of AI-generated content (AIGC), many image generation models are capable of producing harmful content, such as images containing sexual or violent material. Thus, it becomes crucial to identify such unsafe images based on established safety rules. Pre-trained Multimodal Large Language Models (MLLMs) offer potential in this regard, given their strong pattern recognition abilities. Existing approaches typically fine-tune MLLMs with human-labeled datasets, which however brings a series of drawbacks. First, relying on human annotators to label data following intricate and detailed guidelines is both expensive and labor-intensive. Furthermore, users of safety judgment systems may need to frequently update safety rules, making fine-tuning on human-based annotation more challenging. This raises the research question: Can we detect unsafe images by querying MLLMs in a zero-shot setting using a predefined safety constitution (a set of safety rules)? Our research showed that simply querying pre-trained MLLMs does not yield satisfactory results. This lack of effectiveness stems from factors such as the subjectivity of safety rules, the complexity of lengthy constitutions, and the inherent biases in the models. To address these challenges, we propose a MLLM-based method includes objectifying safety rules, assessing the relevance between rules and images, making quick judgments based on debiased token probabilities with logically complete yet simplified precondition chains for safety rules, and conducting more in-depth reasoning with cascaded chain-of-thought processes if necessary. Experiment results demonstrate that our method is highly effective for zero-shot image safety judgment tasks.
arXiv:2501.00321v1 Announce Type: new Abstract: Scoring the Optical Character Recognition (OCR) capabilities of Large Multimodal Models (LMMs) has witnessed growing interest recently. Existing benchmarks have highlighted the impressive performance of LMMs in text recognition; however, their abilities on certain challenging tasks, such as text localization, handwritten content extraction, and logical reasoning, remain underexplored. To bridge this gap, we introduce OCRBench v2, a large-scale bilingual text-centric benchmark with currently the most comprehensive set of tasks (4x more tasks than the previous multi-scene benchmark OCRBench), the widest coverage of scenarios (31 diverse scenarios including street scene, receipt, formula, diagram, and so on), and thorough evaluation metrics, with a total of 10,000 human-verified question-answering pairs and a high proportion of difficult samples. After carefully benchmarking state-of-the-art LMMs on OCRBench v2, we find that 20 out of 22 LMMs score below 50 (100 in total) and suffer from five-type limitations, including less frequently encountered text recognition, fine-grained perception, layout perception, complex element parsing, and logical reasoning. The benchmark and evaluation scripts are available at https://github.com/Yuliang-liu/MultimodalOCR.