cs.LG

2873 posts

arXiv:2503.09701v1 Announce Type: new Abstract: Supervised learning relies on annotated data, which is expensive to obtain. A longstanding strategy to reduce annotation costs is active learning, an iterative process, in which a human annotates only data instances deemed informative by a model. Large language models (LLMs) have pushed the effectiveness of active learning, but have also improved methods such as few- or zero-shot learning, and text synthesis - thereby introducing potential alternatives. This raises the question: has active learning become obsolete? To answer this fully, we must look beyond literature to practical experiences. We conduct an online survey in the NLP community to collect previously intangible insights on the perceived relevance of data annotation, particularly focusing on active learning, including best practices, obstacles and expected future developments. Our findings show that annotated data remains a key factor, and active learning continues to be relevant. While the majority of active learning users find it effective, a comparison with a community survey from over a decade ago reveals persistent challenges: setup complexity, estimation of cost reduction, and tooling. We publish an anonymized version of the collected dataset

Julia Romberg, Christopher Schr\"oder, Julius Gonsior, Katrin Tomanek, Fredrik Olsson3/14/2025

arXiv:2503.09679v1 Announce Type: new Abstract: Meta-learning represents a strong class of approaches for solving few-shot learning tasks. Nonetheless, recent research suggests that simply pre-training a generic encoder can potentially surpass meta-learning algorithms. In this paper, we first discuss the reasons why meta-learning fails to stand out in these few-shot learning experiments, and hypothesize that it is due to the few-shot learning tasks lacking diversity. We propose DRESS, a task-agnostic Disentangled REpresentation-based Self-Supervised meta-learning approach that enables fast model adaptation on highly diversified few-shot learning tasks. Specifically, DRESS utilizes disentangled representation learning to create self-supervised tasks that can fuel the meta-training process. Furthermore, we also propose a class-partition based metric for quantifying the task diversity directly on the input space. We validate the effectiveness of DRESS through experiments on datasets with multiple factors of variation and varying complexity. The results suggest that DRESS is able to outperform competing methods on the majority of the datasets and task setups. Through this paper, we advocate for a re-examination of proper setups for task adaptation studies, and aim to reignite interest in the potential of meta-learning for solving few-shot learning tasks via disentangled representations.

Wei Cui, Tongzi Wu, Jesse C. Cresswell, Yi Sui, Keyvan Golestan3/14/2025

arXiv:2503.10474v1 Announce Type: new Abstract: Young motorcyclists, particularly those aged 15 to 24 years old, face a heightened risk of severe crashes due to factors such as speeding, traffic violations, and helmet usage. This study aims to identify key factors influencing crash severity by analyzing 10,726 young motorcyclist crashes in Texas from 2017 to 2022. Two advanced tabular deep learning models, ARMNet and MambaNet, were employed, using an advanced resampling technique to address class imbalance. The models were trained to classify crashes into three severity levels, Fatal or Severe, Moderate or Minor, and No Injury. ARMNet achieved an accuracy of 87 percent, outperforming 86 percent of Mambanet, with both models excelling in predicting severe and no injury crashes while facing challenges in moderate crash classification. Key findings highlight the significant influence of demographic, environmental, and behavioral factors on crash outcomes. The study underscores the need for targeted interventions, including stricter helmet enforcement and educational programs customized to young motorcyclists. These insights provide valuable guidance for policymakers in developing evidence-based strategies to enhance motorcyclist safety and reduce crash severity.

Shriyank Somvanshi, Anannya Ghosh Tusti, Rohit Chakraborty, Subasish Das3/14/2025

arXiv:2503.09655v1 Announce Type: new Abstract: Traditional Long Short-Term Memory (LSTM) networks are effective for handling sequential data but have limitations such as gradient vanishing and difficulty in capturing long-term dependencies, which can impact their performance in dynamic and risky environments like stock trading. To address these limitations, this study explores the usage of the newly introduced Extended Long Short Term Memory (xLSTM) network in combination with a deep reinforcement learning (DRL) approach for automated stock trading. Our proposed method utilizes xLSTM networks in both actor and critic components, enabling effective handling of time series data and dynamic market environments. Proximal Policy Optimization (PPO), with its ability to balance exploration and exploitation, is employed to optimize the trading strategy. Experiments were conducted using financial data from major tech companies over a comprehensive timeline, demonstrating that the xLSTM-based model outperforms LSTM-based methods in key trading evaluation metrics, including cumulative return, average profitability per trade, maximum earning rate, maximum pullback, and Sharpe ratio. These findings mark the potential of xLSTM for enhancing DRL-based stock trading systems.

Faezeh Sarlakifar, Mohammadreza Mohammadzadeh Asl, Sajjad Rezvani Khaledi, Armin Salimi-Badr3/14/2025

arXiv:2503.09658v1 Announce Type: new Abstract: Algorithmic Recourse is a way for users to modify their attributes to align with a model's expectations, thereby improving their outcomes after receiving unfavorable decisions. In real-world scenarios, users often need to strategically adjust their attributes to compete for limited resources. However, such strategic behavior induces users to "game" algorithms, causing model collapse due to distribution shifts. These shifts arise from user competition, resource constraints, and adaptive user responses. While prior research on Algorithmic Recourse has explored its effects on both systems and users, the impact of resource constraints and competition over time remains underexplored. In this work, we develop a general framework to model user strategic behaviors and their interactions with decision-making systems under resource constraints and competitive dynamics. Through theoretical analysis and empirical evaluation, we identify three key phenomena that arise consistently in both synthetic and real-world datasets: escalating decision boundaries, non-robust model predictions, and inequitable recourse actions. Finally, we discuss the broader social implications of these findings and present two algorithmic strategies aimed at mitigating these challenges.

Hao-Tsung Yang, Jie Gao, Bo-Yi Liu, Zhi-Xuan Liu3/14/2025

arXiv:2503.09674v1 Announce Type: new Abstract: Probabilistic reasoning is a key aspect of both human and artificial intelligence that allows for handling uncertainty and ambiguity in decision-making. In this paper, we introduce a novel numerical reasoning task under uncertainty, focusing on estimating the k-anonymity of user-generated documents containing privacy-sensitive information. We propose BRANCH, which uses LLMs to factorize a joint probability distribution to estimate the k-value-the size of the population matching the given information-by modeling individual pieces of textual information as random variables. The probability of each factor occurring within a population is estimated using standalone LLMs or retrieval-augmented generation systems, and these probabilities are combined into a final k-value. Our experiments show that this method successfully estimates the correct k-value 67% of the time, an 11% increase compared to GPT-4o chain-of-thought reasoning. Additionally, we leverage LLM uncertainty to develop prediction intervals for k-anonymity, which include the correct value in nearly 92% of cases.

Jonathan Zheng, Sauvik Das, Alan Ritter, Wei Xu3/14/2025

arXiv:2503.09646v1 Announce Type: new Abstract: The deployment of sensors for air quality monitoring is constrained by high costs, leading to inadequate network coverage and data deficits in some areas. Utilizing existing observations, spatio-temporal kriging is a method for estimating air quality at unobserved locations during a specific period. Inductive spatio-temporal kriging with increment training strategy has demonstrated its effectiveness using virtual nodes to simulate unobserved nodes. However, a disparity between virtual and real nodes persists, complicating the application of learning patterns derived from virtual nodes to actual unobserved ones. To address these limitations, this paper presents a Physics-Guided Increment Training Strategy (PGITS). Specifically, we design a dynamic graph generation module to incorporate the advection and diffusion processes of airborne particles as physical knowledge into the graph structure, dynamically adjusting the adjacency matrix to reflect physical interactions between nodes. By using physics principles as a bridge between virtual and real nodes, this strategy ensures the features of virtual nodes and their pseudo labels are closer to actual nodes. Consequently, the learned patterns of virtual nodes can be applied to actual unobserved nodes for effective kriging.

Songlin Yang, Tao Yang, Bo Hu3/14/2025

arXiv:2503.09643v1 Announce Type: new Abstract: Federated learning is essential for enabling collaborative model training across decentralized data sources while preserving data privacy and security. This approach mitigates the risks associated with centralized data collection and addresses concerns related to data ownership and compliance. Despite significant advancements in federated learning algorithms that address communication bottlenecks and enhance privacy protection, existing works overlook the impact of differences in data feature dimensions, resulting in global models that disproportionately depend on participants with large feature dimensions. Additionally, current single-view federated learning methods fail to account for the unique characteristics of multi-view data, leading to suboptimal performance in processing such data. To address these issues, we propose a Self-expressive Hypergraph Based Federated Multi-view Learning method (FedMSGL). The proposed method leverages self-expressive character in the local training to learn uniform dimension subspace with latent sample relation. At the central side, an adaptive fusion technique is employed to generate the global model, while constructing a hypergraph from the learned global and view-specific subspace to capture intricate interconnections across views. Experiments on multi-view datasets with different feature dimensions validated the effectiveness of the proposed method.

Daoyuan Li, Zuyuan Yang, Shengli Xie3/14/2025

arXiv:2503.09651v1 Announce Type: new Abstract: In this paper we introduce a simple and intuitive adaptive k nearest neighbours classifier, and explore its utility within the context of bootstrap aggregating ("bagging"). The approach is based on finding discriminant subspaces which are computationally efficient to compute, and are motivated by enhancing the discrimination of classes through nearest neighbour classifiers. This adaptiveness promotes diversity of the individual classifiers fit across different bootstrap samples, and so further leverages the variance reducing effect of bagging. Extensive experimental results are presented documenting the strong performance of the proposed approach in comparison with Random Forest classifiers, as well as other nearest neighbours based ensembles from the literature, plus other relevant benchmarks. Code to implement the proposed approach is available in the form of an R package from https://github.com/DavidHofmeyr/BOPNN.

David P. Hofmeyr3/14/2025

arXiv:2503.10628v1 Announce Type: new Abstract: Expressing confidence is challenging for embodied agents navigating dynamic multimodal environments, where uncertainty arises from both perception and decision-making processes. We present the first work investigating embodied confidence elicitation in open-ended multimodal environments. We introduce Elicitation Policies, which structure confidence assessment across inductive, deductive, and abductive reasoning, along with Execution Policies, which enhance confidence calibration through scenario reinterpretation, action sampling, and hypothetical reasoning. Evaluating agents in calibration and failure prediction tasks within the Minecraft environment, we show that structured reasoning approaches, such as Chain-of-Thoughts, improve confidence calibration. However, our findings also reveal persistent challenges in distinguishing uncertainty, particularly under abductive settings, underscoring the need for more sophisticated embodied confidence elicitation methods.

Tianjiao Yu, Vedant Shah, Muntasir Wahed, Kiet A. Nguyen, Adheesh Juvekar, Tal August, Ismini Lourentzou3/14/2025

arXiv:2503.09656v1 Announce Type: new Abstract: Time Series Forecasting (TSF) is critical in many real-world domains like financial planning and health monitoring. Recent studies have revealed that Large Language Models (LLMs), with their powerful in-contextual modeling capabilities, hold significant potential for TSF. However, existing LLM-based methods usually perform suboptimally because they neglect the inherent characteristics of time series data. Unlike the textual data used in LLM pre-training, the time series data is semantically sparse and comprises distinctive temporal patterns. To address this problem, we propose LLM-PS to empower the LLM for TSF by learning the fundamental \textit{Patterns} and meaningful \textit{Semantics} from time series data. Our LLM-PS incorporates a new multi-scale convolutional neural network adept at capturing both short-term fluctuations and long-term trends within the time series. Meanwhile, we introduce a time-to-text module for extracting valuable semantics across continuous time intervals rather than isolated time points. By integrating these patterns and semantics, LLM-PS effectively models temporal dependencies, enabling a deep comprehension of time series and delivering accurate forecasts. Intensive experimental results demonstrate that LLM-PS achieves state-of-the-art performance in both short- and long-term forecasting tasks, as well as in few- and zero-shot settings.

Jialiang Tang, Shuo Chen, Chen Gong, Jing Zhang, Dacheng Tao3/14/2025

arXiv:2503.09657v1 Announce Type: new Abstract: Structural pruning enhances hardware-agnostic inference efficiency for large language models (LLMs) but often struggles to maintain performance. Local pruning performs efficient layer-by-layer compression but ignores global topology. Global pruning has the potential to find the optimal solution although resource-intensive. However, existing methods tend to rank structural saliency uniformly, ignoring inter-structure dependencies and failing to achieve end-to-end optimization. To address these limitations, we propose T\'yr-the-Pruner, an efficient end-to-end search-based global structural pruning framework. This framework constructs a supernet by repeatedly applying local pruning across a range of sparsity ratios to each layer in an LLM, with the core goal of determining the optimal sparsity distribution under a target overall sparsity ratio. Concretely, we introduce an effective local pruning and an expectation error accumulation approach to improve supernet construction. Furthermore, we employ an iterative prune-and-search strategy with coarse-to-fine sparsity granularity to ensure efficient search convergence. Experimental results show that T\'yr-the-Pruner achieves state-of-the-art structural pruning, retaining 97% of the dense model's performance while removing a challenging 50% of Llama-3.1-70B's parameters.

Guanchen Li, Yixing Xu, Zeping Li, Ji Liu, Xuanwu Yin, Dong Li, Emad Barsoum3/14/2025

arXiv:2503.09659v1 Announce Type: new Abstract: Perinatal complications, defined as conditions that arise during pregnancy, childbirth, and the immediate postpartum period, represent a significant burden on maternal and neonatal health worldwide. Factors contributing to these disparities include limited access to quality healthcare, socioeconomic inequalities, and variations in healthcare infrastructure. Addressing these issues is crucial for improving health outcomes for mothers and newborns, particularly in underserved communities. To mitigate these challenges, we have developed an AI-enabled smartphone application designed to provide decision support at the point-of-care. This tool aims to enhance health monitoring during pregnancy by leveraging machine learning (ML) techniques. The intended use of this application is to assist midwives during routine home visits by offering real-time analysis and providing feedback based on collected data. The application integrates TensorFlow Lite (TFLite) and other Python-based algorithms within a Kotlin framework to process data in real-time. It is designed for use in low-resource settings, where traditional healthcare infrastructure may be lacking. The intended patient population includes pregnant women and new mothers in underserved areas and the developed system was piloted in rural Guatemala. This ML-based solution addresses the critical need for accessible and quality perinatal care by empowering healthcare providers with decision support tools to improve maternal and neonatal health outcomes.

Nasim Katebi, Mohammad Ahmad, Mohsen Motie-Shirazi, Daniel Phan, Ellen Kolesnikova, Sepideh Nikookar, Alireza Rafiei, Murali K. Korikana, Rachel Hall-Clifford, Esteban Castro, Rosibely Sut, Enma Coyote, Anahi Venzor Strader, Edlyn Ramos, Peter Rohloff, Reza Sameni, Gari D. Clifford3/14/2025

arXiv:2503.09661v1 Announce Type: new Abstract: Deep neural network (DNN) models have shown remarkable success in many real-world scenarios, such as object detection and classification. Unfortunately, these models are not yet widely adopted in health monitoring due to exceptionally high requirements for model robustness and deployment in highly resource-constrained devices. In particular, the acquisition of biosignals, such as electrocardiogram (ECG), is subject to large variations between training and deployment, necessitating domain generalization (DG) for robust classification quality across sensors and patients. The continuous monitoring of ECG also requires the execution of DNN models in convenient wearable devices, which is achieved by specialized ECG accelerators with small form factor and ultra-low power consumption. However, combining DG capabilities with ECG accelerators remains a challenge. This article provides a comprehensive overview of ECG accelerators and DG methods and discusses the implication of the combination of both domains, such that multi-domain ECG monitoring is enabled with emerging algorithm-hardware co-optimized systems. Within this context, an approach based on correction layers is proposed to deploy DG capabilities on the edge. Here, the DNN fine-tuning for unknown domains is limited to a single layer, while the remaining DNN model remains unmodified. Thus, computational complexity (CC) for DG is reduced with minimal memory overhead compared to conventional fine-tuning of the whole DNN model. The DNN model-dependent CC is reduced by more than 2.5x compared to DNN fine-tuning at an average increase of F1 score by more than 20% on the generalized target domain. In summary, this article provides a novel perspective on robust DNN classification on the edge for health monitoring applications.

Johnson Loh, Lyubov Dudchenko, Justus Viga, Tobias Gemmeke3/14/2025

arXiv:2503.09624v1 Announce Type: new Abstract: This paper presents the Adaptive Personalized Control System (APECS) architecture, a novel framework for human-in-the-loop control. An architecture is developed which defines appropriate constraints for the system objectives. A method for enacting Lipschitz and sector bounds on the resulting controller is derived to ensure desirable control properties. An analysis of worst-case loss functions and the optimal loss function weighting is made to implement an effective training scheme. Finally, simulations are carried out to demonstrate the effectiveness of the proposed architecture. This architecture resulted in a 4.5% performance increase compared to the human operator and 9% to an unconstrained feedforward neural network trained in the same way.

Marius F. R. Juston, Alex Gisi, William R. Norris, Dustin Nottage, Ahmet Soylemezoglu3/14/2025

arXiv:2503.09638v1 Announce Type: new Abstract: Autonomous vehicles (AVs) are transforming modern transportation, but their reliability and safety are significantly challenged by harsh weather conditions such as heavy rain, fog, and snow. These environmental factors impair the performance of cameras, LiDAR, and radar, leading to reduced situational awareness and increased accident risks. Conventional cloud-based AI systems introduce communication delays, making them unsuitable for the rapid decision-making required in real-time autonomous navigation. This paper presents a novel Edge AI-driven real-time decision-making framework designed to enhance AV responsiveness under adverse weather conditions. The proposed approach integrates convolutional neural networks (CNNs) and recurrent neural networks (RNNs) for improved perception, alongside reinforcement learning (RL)-based strategies to optimize vehicle control in uncertain environments. By processing data at the network edge, this system significantly reduces decision latency while improving AV adaptability. The framework is evaluated using simulated driving scenarios in CARLA and real-world data from the Waymo Open Dataset, covering diverse weather conditions. Experimental results indicate that the proposed model achieves a 40% reduction in processing time and a 25% enhancement in perception accuracy compared to conventional cloud-based systems. These findings highlight the potential of Edge AI in improving AV autonomy, safety, and efficiency, paving the way for more reliable self-driving technology in challenging real-world environments.

Milad Rahmati3/14/2025

arXiv:2503.09617v1 Announce Type: new Abstract: Large Language Models (LLMs) are rapidly saturating existing benchmarks, necessitating new open-ended evaluations. We introduce the Factorio Learning Environment (FLE), based on the game of Factorio, that tests agents in long-term planning, program synthesis, and resource optimization. FLE provides exponentially scaling challenges -- from basic automation to complex factories processing millions of resource units per second. We provide two settings: (1) lab-play consisting of eight structured tasks with fixed resources, and (2) open-play with the unbounded task of building the largest factory on an procedurally generated map. We demonstrate across both settings that models still lack strong spatial reasoning. In lab-play, we find that LLMs exhibit promising short-horizon skills, yet are unable to operate effectively in constrained environments, reflecting limitations in error analysis. In open-play, while LLMs discover automation strategies that improve growth (e.g electric-powered drilling), they fail to achieve complex automation (e.g electronic-circuit manufacturing).

Jack Hopkins, Mart Bakler, Akbir Khan3/14/2025

arXiv:2503.10567v1 Announce Type: new Abstract: Training a model that effectively handles both common and rare data-i.e., achieving performance fairness-is crucial in federated learning (FL). While existing fair FL methods have shown effectiveness, they remain vulnerable to mislabeled data. Ensuring robustness in fair FL is therefore essential. However, fairness and robustness inherently compete, which causes robust strategies to hinder fairness. In this paper, we attribute this competition to the homogeneity in loss patterns exhibited by rare and mislabeled data clients, preventing existing loss-based fair and robust FL methods from effectively distinguishing and handling these two distinct client types. To address this, we propose performance-capacity analysis, which jointly considers model performance on each client and its capacity to handle the dataset, measured by loss and a newly introduced feature dispersion score. This allows mislabeled clients to be identified by their significantly deviated performance relative to capacity while preserving rare data clients. Building on this, we introduce FedPCA, an FL method that robustly achieves fairness. FedPCA first identifies mislabeled clients via a Gaussian Mixture Model on loss-dispersion pairs, then applies fairness and robustness strategies in global aggregation and local training by adjusting client weights and selectively using reliable data. Extensive experiments on three datasets demonstrate FedPCA's effectiveness in tackling this complex challenge. Code will be publicly available upon acceptance.

Nannan Wu, Zengqiang Yan, Nong Sang, Li Yu, Chang Wen Chen3/14/2025

arXiv:2503.09626v1 Announce Type: new Abstract: Social bot detection is crucial for mitigating misinformation, online manipulation, and coordinated inauthentic behavior. While existing neural network-based detectors perform well on benchmarks, they struggle with generalization due to distribution shifts across datasets and frequently produce overconfident predictions for out-of-distribution accounts beyond the training data. To address this, we introduce a novel Uncertainty Estimation for Social Bot Detection (UESBD) framework, which quantifies the predictive uncertainty of detectors beyond mere classification. For this task, we propose Robust Multi-modal Neural Processes (RMNP), which aims to enhance the robustness of multi-modal neural processes to modality inconsistencies caused by social bot camouflage. RMNP first learns unimodal representations through modality-specific encoders. Then, unimodal attentive neural processes are employed to encode the Gaussian distribution of unimodal latent variables. Furthermore, to avoid social bots stealing human features to camouflage themselves thus causing certain modalities to provide conflictive information, we introduce an evidential gating network to explicitly model the reliability of modalities. The joint latent distribution is learned through the generalized product of experts, which takes the reliability of each modality into consideration during fusion. The final prediction is obtained through Monte Carlo sampling of the joint latent distribution followed by a decoder. Experiments on three real-world benchmarks show the effectiveness of RMNP in classification and uncertainty estimation, as well as its robustness to modality conflicts.

Qi Wu, Yingguang Yang, hao liu, Hao Peng, Buyun He, Yutong Xia, Yong Liao3/14/2025

arXiv:2503.09707v1 Announce Type: new Abstract: Semi-supervised learning (SSL) leverages abundant unlabeled data alongside limited labeled data to enhance learning. As vision foundation models (VFMs) increasingly serve as the backbone of vision applications, it remains unclear how SSL interacts with these pre-trained models. To address this gap, we develop new SSL benchmark datasets where frozen VFMs underperform and systematically evaluate representative SSL methods. We make a surprising observation: parameter-efficient fine-tuning (PEFT) using only labeled data often matches SSL performance, even without leveraging unlabeled data. This motivates us to revisit self-training, a conceptually simple SSL baseline, where we use the supervised PEFT model to pseudo-label unlabeled data for further training. To overcome the notorious issue of noisy pseudo-labels, we propose ensembling multiple PEFT approaches and VFM backbones to produce more robust pseudo-labels. Empirical results validate the effectiveness of this simple yet powerful approach, providing actionable insights into SSL with VFMs and paving the way for more scalable and practical semi-supervised learning in the era of foundation models.

Ping Zhang, Zheda Mai, Quang-Huy Nguyen, Wei-Lun Chao3/14/2025