cs.LG
2358 postsarXiv:2501.09512v2 Announce Type: replace Abstract: Code-switching, the alternation of languages within a single discourse, presents a significant challenge for Automatic Speech Recognition. Despite the unique nature of the task, performance is commonly measured with established metrics such as Word-Error-Rate (WER). However, in this paper, we question whether these general metrics accurately assess performance on code-switching. Specifically, using both Connectionist-Temporal-Classification and Encoder-Decoder models, we show fine-tuning on non-code-switched data from both matrix and embedded language improves classical metrics on code-switching test sets, although actual code-switched words worsen (as expected). Therefore, we propose Point-of-Interest Error Rate (PIER), a variant of WER that focuses only on specific words of interest. We instantiate PIER on code-switched utterances and show that this more accurately describes the code-switching performance, showing huge room for improvement in future work. This focused evaluation allows for a more precise assessment of model performance, particularly in challenging aspects such as inter-word and intra-word code-switching.
arXiv:2501.09551v2 Announce Type: replace Abstract: The prediction of solar irradiance enhances reliability in photovoltaic (PV) solar plant generation and grid integration. In Colombia, PV plants face penalties if energy production deviates beyond governmental thresholds from intraday market offers. This research employs Long Short-Term Memory (LSTM) and Bidirectional-LSTM (Bi-LSTM) models, utilizing meteorological data from a PV plant in El Paso, Cesar, Colombia, to predict solar irradiance with a 6-hour horizon and 10-minute resolution. While Bi-LSTM showed superior performance, the LSTM model achieved comparable results with significantly reduced training time (6 hours versus 18 hours), making it computationally advantageous. The LSTM predictions were averaged to create an hourly resolution model, evaluated using Mean Absolute Error, Root-Mean-Square Error, Normalized Root-Mean-Square Error, and Mean Absolute Percentage Error metrics. Comparison with the Global Forecast System (GFS) revealed similar performance, with both models effectively capturing daily solar irradiance patterns. The forecast model integrates with an Object-Oriented power production model, enabling accurate energy offers in the intraday market while minimizing penalty costs.
arXiv:2411.19223v4 Announce Type: replace Abstract: We propose a rigorous decomposition of predictive error, highlighting that not all 'irreducible' error is genuinely immutable. Many domains stand to benefit from iterative enhancements in measurement, construct validity, and modeling. Our approach demonstrates how apparently 'unpredictable' outcomes can become more tractable with improved data (across both target and features) and refined algorithms. By distinguishing aleatoric from epistemic error, we delineate how accuracy may asymptotically improve--though inherent stochasticity may remain--and offer a robust framework for advancing computational research.
arXiv:2412.00985v2 Announce Type: replace Abstract: Partial observability of the underlying states generally presents significant challenges for reinforcement learning (RL). In practice, certain \emph{privileged information}, e.g., the access to states from simulators, has been exploited in training and has achieved prominent empirical successes. To better understand the benefits of privileged information, we revisit and examine several simple and practically used paradigms in this setting. Specifically, we first formalize the empirical paradigm of \emph{expert distillation} (also known as \emph{teacher-student} learning), demonstrating its pitfall in finding near-optimal policies. We then identify a condition of the partially observable environment, the \emph{deterministic filter condition}, under which expert distillation achieves sample and computational complexities that are \emph{both} polynomial. Furthermore, we investigate another useful empirical paradigm of \emph{asymmetric actor-critic}, and focus on the more challenging setting of observable partially observable Markov decision processes. We develop a belief-weighted asymmetric actor-critic algorithm with polynomial sample and quasi-polynomial computational complexities, in which one key component is a new provable oracle for learning belief states that preserve \emph{filter stability} under a misspecified model, which may be of independent interest. Finally, we also investigate the provable efficiency of partially observable multi-agent RL (MARL) with privileged information. We develop algorithms featuring \emph{centralized-training-with-decentralized-execution}, a popular framework in empirical MARL, with polynomial sample and (quasi-)polynomial computational complexities in both paradigms above. Compared with a few recent related theoretical studies, our focus is on understanding practically inspired algorithmic paradigms, without computationally intractable oracles.
arXiv:2410.22658v2 Announce Type: replace Abstract: Continual Imitation Learning (CiL) involves extracting and accumulating task knowledge from demonstrations across multiple stages and tasks to achieve a multi-task policy. With recent advancements in foundation models, there has been a growing interest in adapter-based CiL approaches, where adapters are established parameter-efficiently for tasks newly demonstrated. While these approaches isolate parameters for specific tasks and tend to mitigate catastrophic forgetting, they limit knowledge sharing among different demonstrations. We introduce IsCiL, an adapter-based CiL framework that addresses this limitation of knowledge sharing by incrementally learning shareable skills from different demonstrations, thus enabling sample-efficient task adaptation using the skills particularly in non-stationary CiL environments. In IsCiL, demonstrations are mapped into the state embedding space, where proper skills can be retrieved upon input states through prototype-based memory. These retrievable skills are incrementally learned on their corresponding adapters. Our CiL experiments with complex tasks in Franka-Kitchen and Meta-World demonstrate robust performance of IsCiL in both task adaptation and sample-efficiency. We also show a simple extension of IsCiL for task unlearning scenarios.
arXiv:2501.09525v2 Announce Type: replace Abstract: Class-incremental fault diagnosis requires a model to adapt to new fault classes while retaining previous knowledge. However, limited research exists for imbalanced and long-tailed data. Extracting discriminative features from few-shot fault data is challenging, and adding new fault classes often demands costly model retraining. Moreover, incremental training of existing methods risks catastrophic forgetting, and severe class imbalance can bias the model's decisions toward normal classes. To tackle these issues, we introduce a Supervised Contrastive knowledge distiLlation for class Incremental Fault Diagnosis (SCLIFD) framework proposing supervised contrastive knowledge distillation for improved representation learning capability and less forgetting, a novel prioritized exemplar selection method for sample replay to alleviate catastrophic forgetting, and the Random Forest Classifier to address the class imbalance. Extensive experimentation on simulated and real-world industrial datasets across various imbalance ratios demonstrates the superiority of SCLIFD over existing approaches. Our code can be found at https://github.com/Zhang-Henry/SCLIFD_TII.
arXiv:2501.05415v2 Announce Type: replace Abstract: Knowledge Tracing (KT) is crucial in education assessment, which focuses on depicting students' learning states and assessing students' mastery of subjects. With the rise of modern online learning platforms, particularly massive open online courses (MOOCs), an abundance of interaction data has greatly advanced the development of the KT technology. Previous research commonly adopts deterministic representation to capture students' knowledge states, which neglects the uncertainty during student interactions and thus fails to model the true knowledge state in learning process. In light of this, we propose an Uncertainty-Aware Knowledge Tracing model (UKT) which employs stochastic distribution embeddings to represent the uncertainty in student interactions, with a Wasserstein self-attention mechanism designed to capture the transition of state distribution in student learning behaviors. Additionally, we introduce the aleatory uncertainty-aware contrastive learning loss, which strengthens the model's robustness towards different types of uncertainties. Extensive experiments on six real-world datasets demonstrate that UKT not only significantly surpasses existing deep learning-based models in KT prediction, but also shows unique advantages in handling the uncertainty of student interactions.
arXiv:2501.08653v2 Announce Type: replace Abstract: Event prediction tasks often handle spatio-temporal data distributed in a large spatial area. Different regions in the area exhibit different characteristics while having latent correlations. This spatial heterogeneity and correlations greatly affect the spatio-temporal distributions of event occurrences, which has not been addressed by state-of-the-art models. Learning spatial dependencies of events in a continuous space is challenging due to its fine granularity and a lack of prior knowledge. In this work, we propose a novel Graph Spatio-Temporal Point Process (GSTPP) model for fine-grained event prediction. It adopts an encoder-decoder architecture that jointly models the state dynamics of spatially localized regions using neural Ordinary Differential Equations (ODEs). The state evolution is built on the foundation of a novel Self-Adaptive Anchor Graph (SAAG) that captures spatial dependencies. By adaptively localizing the anchor nodes in the space and jointly constructing the correlation edges between them, the SAAG enhances the model's ability of learning complex spatial event patterns. The proposed GSTPP model greatly improves the accuracy of fine-grained event prediction. Extensive experimental results show that our method greatly improves the prediction accuracy over existing spatio-temporal event prediction approaches.
arXiv:2410.23649v2 Announce Type: replace Abstract: Parkinson's disease (PD), a degenerative disorder of the central nervous system, is commonly diagnosed using functional medical imaging techniques such as single-photon emission computed tomography (SPECT). In this study, we utilized two SPECT data sets (n = 634 and n = 202) from different hospitals to develop a model capable of accurately predicting PD stages, a multiclass classification task. We used the entire three-dimensional (3D) brain images as input and experimented with various model architectures. Initially, we treated the 3D images as sequences of two-dimensional (2D) slices and fed them sequentially into 2D convolutional neural network (CNN) models pretrained on ImageNet, averaging the outputs to obtain the final predicted stage. We also applied 3D CNN models pretrained on Kinetics-400. Additionally, we incorporated an attention mechanism to account for the varying importance of different slices in the prediction process. To further enhance model efficacy and robustness, we simultaneously trained the two data sets using weight sharing, a technique known as cotraining. Our results demonstrated that 2D models pretrained on ImageNet outperformed 3D models pretrained on Kinetics-400, and models utilizing the attention mechanism outperformed both 2D and 3D models. The cotraining technique proved effective in improving model performance when the cotraining data sets were sufficiently large.
arXiv:2411.09854v2 Announce Type: replace Abstract: Algorithms with predictions is a recent framework for decision-making under uncertainty that leverages the power of machine-learned predictions without making any assumption about their quality. The goal in this framework is for algorithms to achieve an improved performance when the predictions are accurate while maintaining acceptable guarantees when the predictions are erroneous. A serious concern with algorithms that use predictions is that these predictions can be biased and, as a result, cause the algorithm to make decisions that are deemed unfair. We show that this concern manifests itself in the classical secretary problem in the learning-augmented setting -- the state-of-the-art algorithm can have zero probability of accepting the best candidate, which we deem unfair, despite promising to accept a candidate whose expected value is at least $\max\{\Omega (1) , 1 - O(\epsilon)\}$ times the optimal value, where $\epsilon$ is the prediction error. We show how to preserve this promise while also guaranteeing to accept the best candidate with probability $\Omega(1)$. Our algorithm and analysis are based on a new "pegging" idea that diverges from existing works and simplifies/unifies some of their results. Finally, we extend to the $k$-secretary problem and complement our theoretical analysis with experiments.
arXiv:2410.23677v2 Announce Type: replace Abstract: Adversarial examples have raised several open questions, such as why they can deceive classifiers and transfer between different models. A prevailing hypothesis to explain these phenomena suggests that adversarial perturbations appear as random noise but contain class-specific features. This hypothesis is supported by the success of perturbation learning, where classifiers trained solely on adversarial examples and the corresponding incorrect labels generalize well to correctly labeled test data. Although this hypothesis and perturbation learning are effective in explaining intriguing properties of adversarial examples, their solid theoretical foundation is limited. In this study, we theoretically explain the counterintuitive success of perturbation learning. We assume wide two-layer networks and the results hold for any data distribution. We prove that adversarial perturbations contain sufficient class-specific features for networks to generalize from them. Moreover, the predictions of classifiers trained on mislabeled adversarial examples coincide with those of classifiers trained on correctly labeled clean samples. The code is available at https://github.com/s-kumano/perturbation-learning.
arXiv:2411.10293v3 Announce Type: replace Abstract: Indoor radar perception has seen rising interest due to affordable costs driven by emerging automotive imaging radar developments and the benefits of reduced privacy concerns and reliability under hazardous conditions (e.g., fire and smoke). However, existing radar perception pipelines fail to account for distinctive characteristics of the multi-view radar setting. In this paper, we propose Radar dEtection TRansformer (RETR), an extension of the popular DETR architecture, tailored for multi-view radar perception. RETR inherits the advantages of DETR, eliminating the need for hand-crafted components for object detection and segmentation in the image plane. More importantly, RETR incorporates carefully designed modifications such as 1) depth-prioritized feature similarity via a tunable positional encoding (TPE); 2) a tri-plane loss from both radar and camera coordinates; and 3) a learnable radar-to-camera transformation via reparameterization, to account for the unique multi-view radar setting. Evaluated on two indoor radar perception datasets, our approach outperforms existing state-of-the-art methods by a margin of 15.38+ AP for object detection and 11.91+ IoU for instance segmentation, respectively. Our implementation is available at https://github.com/merlresearch/radar-detection-transformer.
arXiv:2411.15127v2 Announce Type: replace Abstract: Sensing human motions through Inertial Measurement Units (IMUs) embedded in personal devices has enabled significant applications in health and wellness. Labeled IMU data is scarce, however, unlabeled or weakly labeled IMU data can be used to model human motions. For video or text modalities, the "pretrain and adapt" approach utilizes large volumes of unlabeled or weakly labeled data to build a strong feature extractor, followed by adaptation to specific tasks using limited labeled data. However, pretraining methods are poorly understood for IMU data, and pipelines are rarely evaluated on out-of-domain tasks. We propose PRIMUS: a method for PRetraining IMU encoderS that uses a novel pretraining objective that is empirically validated based on downstream performance on both in-domain and out-of-domain datasets. The PRIMUS objective effectively enhances downstream performance by combining self-supervision, multimodal, and nearest-neighbor supervision. With fewer than 500 labeled samples per class, PRIMUS improves test accuracy by up to 15%, compared to state-of-the-art baselines. To benefit the broader community, we have open-sourced our code at github.com/nokia-bell-labs/pretrained-imu-encoders.
arXiv:2411.05852v2 Announce Type: replace Abstract: Demand forecasting faces challenges induced by Peak Events (PEs) corresponding to special periods such as promotions and holidays. Peak events create significant spikes in demand followed by demand ramp down periods. Neural networks like MQCNN and MQT overreact to demand peaks by carrying over the elevated PE demand into subsequent Post-Peak-Event (PPE) periods, resulting in significantly over-biased forecasts. To tackle this challenge, we introduce a neural forecasting model called Split Peak Attention DEcomposition, SPADE. This model reduces the impact of PEs on subsequent forecasts by modeling forecasting as consisting of two separate tasks: one for PEs; and the other for the rest. Its architecture then uses masked convolution filters and a specialized Peak Attention module. We show SPADE's performance on a worldwide retail dataset with hundreds of millions of products. Our results reveal an overall PPE improvement of 4.5%, a 30% improvement for most affected forecasts after promotions and holidays, and an improvement in PE accuracy by 3.9%, relative to current production models.
arXiv:2410.23142v2 Announce Type: replace Abstract: Deep neural networks are susceptible to adversarial attacks and common corruptions, which undermine their robustness. In order to enhance model resilience against such challenges, Adversarial Training (AT) has emerged as a prominent solution. Nevertheless, adversarial robustness is often attained at the expense of model fairness during AT, i.e., disparity in class-wise robustness of the model. While distinctive classes become more robust towards such adversaries, hard to detect classes suffer. Recently, research has focused on improving model fairness specifically for perturbed images, overlooking the accuracy of the most likely non-perturbed data. Additionally, despite their robustness against the adversaries encountered during model training, state-of-the-art adversarial trained models have difficulty maintaining robustness and fairness when confronted with diverse adversarial threats or common corruptions. In this work, we address the above concerns by introducing a novel approach called Fair Targeted Adversarial Training (FAIR-TAT). We show that using targeted adversarial attacks for adversarial training (instead of untargeted attacks) can allow for more favorable trade-offs with respect to adversarial fairness. Empirical results validate the efficacy of our approach.
arXiv:2411.15843v3 Announce Type: replace Abstract: Leveraging the large generative prior of the flow transformer for tuning-free image editing requires authentic inversion to project the image into the model's domain and a flexible invariance control mechanism to preserve non-target contents. However, the prevailing diffusion inversion performs deficiently in flow-based models, and the invariance control cannot reconcile diverse rigid and non-rigid editing tasks. To address these, we systematically analyze the \textbf{inversion and invariance} control based on the flow transformer. Specifically, we unveil that the Euler inversion shares a similar structure to DDIM yet is more susceptible to the approximation error. Thus, we propose a two-stage inversion to first refine the velocity estimation and then compensate for the leftover error, which pivots closely to the model prior and benefits editing. Meanwhile, we propose the invariance control that manipulates the text features within the adaptive layer normalization, connecting the changes in the text prompt to image semantics. This mechanism can simultaneously preserve the non-target contents while allowing rigid and non-rigid manipulation, enabling a wide range of editing types such as visual text, quantity, facial expression, etc. Experiments on versatile scenarios validate that our framework achieves flexible and accurate editing, unlocking the potential of the flow transformer for versatile image editing.
arXiv:2410.18067v3 Announce Type: replace Abstract: This paper studies how transformer models develop robust wavelet-like properties that effectively compensate for the theoretical limitations of Rotary Position Embeddings (RoPE), providing insights into how these networks process sequential information across different scales. Through theoretical analysis and empirical validation across models ranging from 1B to 12B parameters, we show that attention heads naturally evolve to implement multi-resolution processing analogous to wavelet transforms. Our analysis establishes that attention heads consistently organize into complementary frequency bands with systematic power distribution patterns, and these wavelet-like characteristics become more pronounced in larger models. We provide mathematical analysis showing how these properties align with optimal solutions to the fundamental uncertainty principle between positional precision and frequency resolution. Our findings suggest that the effectiveness of modern transformer architectures stems significantly from their development of optimal multi-resolution decompositions that naturally address the theoretical constraints of position encoding.
arXiv:2501.06066v2 Announce Type: replace Abstract: Deploying artificial intelligence (AI) models on edge devices involves a delicate balance between meeting stringent complexity constraints, such as limited memory and energy resources, and ensuring reliable performance in sensitive decision-making tasks. One way to enhance reliability is through uncertainty quantification via Bayesian inference. This approach, however, typically necessitates maintaining and running multiple models in an ensemble, which may exceed the computational limits of edge devices. This paper introduces a low-complexity methodology to address this challenge by distilling calibration information from a more complex model. In an offline phase, predictive probabilities generated by a high-complexity cloud-based model are leveraged to determine a threshold based on the typical divergence between the cloud and edge models. At run time, this threshold is used to construct credal sets -- ranges of predictive probabilities that are guaranteed, with a user-selected confidence level, to include the predictions of the cloud model. The credal sets are obtained through thresholding of a divergence measure in the simplex of predictive probabilities. Experiments on visual and language tasks demonstrate that the proposed approach, termed Conformalized Distillation for Credal Inference (CD-CI), significantly improves calibration performance compared to low-complexity Bayesian methods, such as Laplace approximation, making it a practical and efficient solution for edge AI deployments.
arXiv:2411.09502v4 Announce Type: replace Abstract: Text-to-image diffusion model is a popular paradigm that synthesizes personalized images by providing a text prompt and a random Gaussian noise. While people observe that some noises are ``golden noises'' that can achieve better text-image alignment and higher human preference than others, we still lack a machine learning framework to obtain those golden noises. To learn golden noises for diffusion sampling, we mainly make three contributions in this paper. First, we identify a new concept termed the \textit{noise prompt}, which aims at turning a random Gaussian noise into a golden noise by adding a small desirable perturbation derived from the text prompt. Following the concept, we first formulate the \textit{noise prompt learning} framework that systematically learns ``prompted'' golden noise associated with a text prompt for diffusion models. Second, we design a noise prompt data collection pipeline and collect a large-scale \textit{noise prompt dataset}~(NPD) that contains 100k pairs of random noises and golden noises with the associated text prompts. With the prepared NPD as the training dataset, we trained a small \textit{noise prompt network}~(NPNet) that can directly learn to transform a random noise into a golden noise. The learned golden noise perturbation can be considered as a kind of prompt for noise, as it is rich in semantic information and tailored to the given text prompt. Third, our extensive experiments demonstrate the impressive effectiveness and generalization of NPNet on improving the quality of synthesized images across various diffusion models, including SDXL, DreamShaper-xl-v2-turbo, and Hunyuan-DiT. Moreover, NPNet is a small and efficient controller that acts as a plug-and-play module with very limited additional inference and computational costs, as it just provides a golden noise instead of a random noise without accessing the original pipeline.
arXiv:2501.09685v2 Announce Type: replace Abstract: This tutorial provides an in-depth guide on inference-time guidance and alignment methods for optimizing downstream reward functions in diffusion models. While diffusion models are renowned for their generative modeling capabilities, practical applications in fields such as biology often require sample generation that maximizes specific metrics (e.g., stability, affinity in proteins, closeness to target structures). In these scenarios, diffusion models can be adapted not only to generate realistic samples but also to explicitly maximize desired measures at inference time without fine-tuning. This tutorial explores the foundational aspects of such inference-time algorithms. We review these methods from a unified perspective, demonstrating that current techniques -- such as Sequential Monte Carlo (SMC)-based guidance, value-based sampling, and classifier guidance -- aim to approximate soft optimal denoising processes (a.k.a. policies in RL) that combine pre-trained denoising processes with value functions serving as look-ahead functions that predict from intermediate states to terminal rewards. Within this framework, we present several novel algorithms not yet covered in the literature. Furthermore, we discuss (1) fine-tuning methods combined with inference-time techniques, (2) inference-time algorithms based on search algorithms such as Monte Carlo tree search, which have received limited attention in current research, and (3) connections between inference-time algorithms in language models and diffusion models. The code of this tutorial on protein design is available at https://github.com/masa-ue/AlignInversePro