cs.IR

245 posts

arXiv:2503.22005v1 Announce Type: new Abstract: Conversational recommender systems (CRSs) are designed to suggest the target item that the user is likely to prefer through multi-turn conversations. Recent studies stress that capturing sentiments in user conversations improves recommendation accuracy. However, they employ a single user representation, which may fail to distinguish between contrasting user intentions, such as likes and dislikes, potentially leading to suboptimal performance. To this end, we propose a novel conversational recommender model, called COntrasting user pReference expAnsion and Learning (CORAL). Firstly, CORAL extracts the user's hidden preferences through contrasting preference expansion using the reasoning capacity of the LLMs. Based on the potential preference, CORAL explicitly differentiates the contrasting preferences and leverages them into the recommendation process via preference-aware learning. Extensive experiments show that CORAL significantly outperforms existing methods in three benchmark datasets, improving up to 99.72% in Recall@10. The code and datasets are available at https://github.com/kookeej/CORAL

Heejin Kook, Junyoung Kim, Seongmin Park, Jongwuk Lee3/31/2025

arXiv:2503.22672v1 Announce Type: new Abstract: State-of-the-art cross-encoders can be fine-tuned to be highly effective in passage re-ranking. The typical fine-tuning process of cross-encoders as re-rankers requires large amounts of manually labelled data, a contrastive learning objective, and a set of heuristically sampled negatives. An alternative recent approach for fine-tuning instead involves teaching the model to mimic the rankings of a highly effective large language model using a distillation objective. These fine-tuning strategies can be applied either individually, or in sequence. In this work, we systematically investigate the effectiveness of point-wise cross-encoders when fine-tuned independently in a single stage, or sequentially in two stages. Our experiments show that the effectiveness of point-wise cross-encoders fine-tuned using contrastive learning is indeed on par with that of models fine-tuned with multi-stage approaches. Code is available for reproduction at https://github.com/fpezzuti/multistage-finetuning.

Francesca Pezzuti, Sean MacAvaney, Nicola Tonellotto3/31/2025

arXiv:2503.21162v2 Announce Type: replace Abstract: This study examined the temporal aspect of COVID-19-related health-seeking behavior in Metro Manila, National Capital Region, Philippines through a network density analysis of Google Trends data. A total of 15 keywords across five categories (English symptoms, Filipino symptoms, face wearing, quarantine, and new normal) were examined using both 15-day and 30-day rolling windows from March 2020 to March 2021. The methodology involved constructing network graphs using distance correlation coefficients at varying thresholds (0.4, 0.5, 0.6, and 0.8) and analyzing the time-series data of network density and clustering coefficients. Results revealed three key findings: (1) an inverse relationship between the threshold values and network metrics, indicating that higher thresholds provide more meaningful keyword relationships; (2) exceptionally high network connectivity during the initial pandemic months followed by gradual decline; and (3) distinct patterns in keyword relationships, transitioning from policy-focused searches to more symptom-specific queries as the pandemic temporally progressed. The 30-day window analysis showed more stable, but less search activities compared to the 15-day windows, suggesting stronger correlations in immediate search behaviors. These insights are helpful for health communication because it emphasizes the need of a strategic and conscientious information dissemination from the government or the private sector based on the networked search behavior (e.g. prioritizing to inform select symptoms rather than an overview of what the coronavirus is).

Michael T. Lopez II, Cheska Elise Hung, Maria Regina Justina E. Estuar3/31/2025

arXiv:2503.16081v2 Announce Type: replace Abstract: Multimodal Large Language Models (MLLMs) have gained significant traction for their ability to process diverse input data types and generate coherent, contextually relevant outputs across various applications. While supervised fine-tuning (SFT) has been the predominant approach to enhance MLLM capabilities in task-specific optimization, it often falls short in fostering crucial generalized reasoning abilities. Although reinforcement learning (RL) holds great promise in overcoming these limitations, it encounters two significant challenges: (1) its generalized capacities in multimodal tasks remain largely unexplored, and (2) its training constraints, including the constant Kullback-Leibler divergence or the clamp strategy, often result in suboptimal bottlenecks. To address these challenges, we propose OThink-MR1, an advanced MLLM equipped with profound comprehension and reasoning capabilities across multimodal tasks. Specifically, we introduce Group Relative Policy Optimization with a dynamic Kullback-Leibler strategy (GRPO-D), which markedly enhances reinforcement learning (RL) performance. For Qwen2-VL-2B-Instruct, GRPO-D achieves a relative improvement of more than 5.72% over SFT and more than 13.59% over GRPO in same-task evaluation on two adapted datasets. Furthermore, GRPO-D demonstrates remarkable cross-task generalization capabilities, with an average relative improvement of more than 61.63% over SFT in cross-task evaluation. These results highlight that the MLLM trained with GRPO-D on one multimodal task can be effectively transferred to another task, underscoring the superior generalized reasoning capabilities of our proposed OThink-MR1 model.

Zhiyuan Liu, Yuting Zhang, Feng Liu, Changwang Zhang, Ying Sun, Jun Wang3/31/2025

arXiv:2503.22303v1 Announce Type: new Abstract: Conversational Question Answering (ConvQA) involves multiple subtasks, i) to understand incomplete questions in their context, ii) to retrieve relevant information, and iii) to generate answers. This work presents PRAISE, a pipeline-based approach for ConvQA that trains LLM adapters for each of the three subtasks. As labeled training data for individual subtasks is unavailable in practice, PRAISE learns from its own generations using the final answering performance as feedback signal without human intervention and treats intermediate information, like relevant evidence, as weakly labeled data. We apply Direct Preference Optimization by contrasting successful and unsuccessful samples for each subtask. In our experiments, we show the effectiveness of this training paradigm: PRAISE shows improvements per subtask and achieves new state-of-the-art performance on a popular ConvQA benchmark, by gaining 15.5 percentage points increase in precision over baselines.

Magdalena Kaiser, Gerhard Weikum3/31/2025

arXiv:2503.22675v1 Announce Type: new Abstract: Sequential Recommendation (SeqRec) aims to predict the next item by capturing sequential patterns from users' historical interactions, playing a crucial role in many real-world recommender systems. However, existing approaches predominantly adopt a direct forward computation paradigm, where the final hidden state of the sequence encoder serves as the user representation. We argue that this inference paradigm, due to its limited computational depth, struggles to model the complex evolving nature of user preferences and lacks a nuanced understanding of long-tail items, leading to suboptimal performance. To address this issue, we propose \textbf{ReaRec}, the first inference-time computing framework for recommender systems, which enhances user representations through implicit multi-step reasoning. Specifically, ReaRec autoregressively feeds the sequence's last hidden state into the sequential recommender while incorporating special reasoning position embeddings to decouple the original item encoding space from the multi-step reasoning space. Moreover, we introduce two lightweight reasoning-based learning methods, Ensemble Reasoning Learning (ERL) and Progressive Reasoning Learning (PRL), to further effectively exploit ReaRec's reasoning potential. Extensive experiments on five public real-world datasets and different SeqRec architectures demonstrate the generality and effectiveness of our proposed ReaRec. Remarkably, post-hoc analyses reveal that ReaRec significantly elevates the performance ceiling of multiple sequential recommendation backbones by approximately 30\%-50\%. Thus, we believe this work can open a new and promising avenue for future research in inference-time computing for sequential recommendation.

Jiakai Tang, Sunhao Dai, Teng Shi, Jun Xu, Xu Chen, Wen Chen, Wu Jian, Yuning Jiang3/31/2025

arXiv:2503.20698v2 Announce Type: replace Abstract: Videos inherently contain multiple modalities, including visual events, text overlays, sounds, and speech, all of which are important for retrieval. However, state-of-the-art multimodal language models like VAST and LanguageBind are built on vision-language models (VLMs), and thus overly prioritize visual signals. Retrieval benchmarks further reinforce this bias by focusing on visual queries and neglecting other modalities. We create a search system MMMORRF that extracts text and features from both visual and audio modalities and integrates them with a novel modality-aware weighted reciprocal rank fusion. MMMORRF is both effective and efficient, demonstrating practicality in searching videos based on users' information needs instead of visual descriptive queries. We evaluate MMMORRF on MultiVENT 2.0 and TVR, two multimodal benchmarks designed for more targeted information needs, and find that it improves nDCG@20 by 81% over leading multimodal encoders and 37% over single-modality retrieval, demonstrating the value of integrating diverse modalities.

Saron Samuel, Dan DeGenaro, Jimena Guallar-Blasco, Kate Sanders, Oluwaseun Eisape, Arun Reddy, Alexander Martin, Andrew Yates, Eugene Yang, Cameron Carpenter, David Etter, Efsun Kayi, Matthew Wiesner, Kenton Murray, Reno Kriz3/31/2025

arXiv:2503.21804v1 Announce Type: new Abstract: Hyper-relational Knowledge Graphs (HRKGs) extend traditional KGs beyond binary relations, enabling the representation of contextual, provenance, and temporal information in domains, such as historical events, sensor data, video content, and narratives. HRKGs can be structured using several Metadata Representation Models (MRMs), including Reification (REF), Singleton Property (SGP), and RDF-star (RDR). However, the effects of different MRMs on KG Embedding (KGE) and Link Prediction (LP) models remain unclear. This study evaluates MRMs in the context of LP tasks, identifies the limitations of existing evaluation frameworks, and introduces a new task that ensures fair comparisons across MRMs. Furthermore, we propose a framework that effectively reflects the knowledge representations of the three MRMs in latent space. Experiments on two types of datasets reveal that REF performs well in simple HRKGs, whereas SGP is less effective. However, in complex HRKGs, the differences among MRMs in the LP tasks are minimal. Our findings contribute to an optimal knowledge representation strategy for HRKGs in LP tasks.

Shusaku Egami, Kyoumoto Matsushita, Takanori Ugai, Ken Fukuda3/31/2025

arXiv:2503.21813v1 Announce Type: new Abstract: Hallucinations are inevitable in downstream tasks using large language models (LLMs). While addressing hallucinations becomes a substantial challenge for LLM-based ontology matching (OM) systems, we introduce a new benchmark dataset called OAEI-LLM-T. The dataset evolves from the TBox (i.e. schema-matching) datasets in the Ontology Alignment Evaluation Initiative (OAEI), capturing hallucinations of different LLMs performing OM tasks. These OM-specific hallucinations are carefully classified into two primary categories and six sub-categories. We showcase the usefulness of the dataset in constructing the LLM leaderboard and fine-tuning foundational LLMs for LLM-based OM systems.

Zhangcheng Qiang3/31/2025

arXiv:2503.21810v1 Announce Type: new Abstract: Taxonomy inference for tabular data is a critical task of schema inference, aiming at discovering entity types (i.e., concepts) of the tables and building their hierarchy. It can play an important role in data management, data exploration, ontology learning, and many data-centric applications. Existing schema inference systems focus more on XML, JSON or RDF data, and often rely on lexical formats and structures of the data for calculating similarities, with limited exploitation of the semantics of the text across a table. Motivated by recent works on taxonomy completion and construction using Large Language Models (LLMs), this paper presents two LLM-based methods for taxonomy inference for tables: (i) EmTT which embeds columns by fine-tuning with contrastive learning encoder-alone LLMs like BERT and utilises clustering for hierarchy construction, and (ii) GeTT which generates table entity types and their hierarchy by iterative prompting using a decoder-alone LLM like GPT-4. Extensive evaluation on three real-world datasets with six metrics covering different aspects of the output taxonomies has demonstrated that EmTT and GeTT can both produce taxonomies with strong consistency relative to the Ground Truth.

Zhenyu Wu, Jiaoyan Chen, Norman W. Paton3/31/2025

arXiv:2503.22049v1 Announce Type: new Abstract: Next Point-of-Interest (POI) recommendation aims to predict users' next locations by leveraging historical check-in sequences. Although existing methods have shown promising results, they often struggle to capture complex high-order relationships and effectively adapt to diverse user behaviors, particularly when addressing the cold-start issue. To address these challenges, we propose Hypergraph-enhanced Meta-learning Adaptive Network (HyperMAN), a novel framework that integrates heterogeneous hypergraph modeling with a difficulty-aware meta-learning mechanism for next POI recommendation. Specifically, three types of heterogeneous hyperedges are designed to capture high-order relationships: user visit behaviors at specific times (Temporal behavioral hyperedge), spatial correlations among POIs (spatial functional hyperedge), and user long-term preferences (user preference hyperedge). Furthermore, a diversity-aware meta-learning mechanism is introduced to dynamically adjust learning strategies, considering users behavioral diversity. Extensive experiments on real-world datasets demonstrate that HyperMAN achieves superior performance, effectively addressing cold start challenges and significantly enhancing recommendation accuracy.

Jinze Wang, Tiehua Zhang, Lu Zhang, Yang Bai, Xin Li, Jiong Jin3/31/2025

arXiv:2503.22182v1 Announce Type: new Abstract: E-commerce has revolutionized retail, yet its traditional workflows remain inefficient, with significant time and resource costs tied to product design and manufacturing inventory. This paper introduces a novel system deployed at Alibaba that leverages AI-generated items (AIGI) to address these challenges with personalized text-to-image generation for e-commercial product design. AIGI enables an innovative business mode called "sell it before you make it", where merchants can design fashion items and generate photorealistic images with digital models based on textual descriptions. Only when the items have received a certain number of orders, do the merchants start to produce them, which largely reduces reliance on physical prototypes and thus accelerates time to market. For such a promising application, we identify the underlying key scientific challenge, i.e., capturing the users' group-level personalized preferences towards multiple generated candidate images. To this end, we propose a Personalized Group-Level Preference Alignment Framework for Diffusion Models (i.e., PerFusion). We first design PerFusion Reward Model for user preference estimation with a feature-crossing-based personalized plug-in. Then we develop PerFusion with a personalized adaptive network to model diverse preferences across users, and meanwhile derive the group-level preference optimization objective to capture the comparative behaviors among multiple candidates. Both offline and online experiments demonstrate the effectiveness of our proposed algorithm. The AI-generated items have achieved over 13% relative improvements for both click-through rate and conversion rate compared to their human-designed counterparts, validating the revolutionary potential of AI-generated items for e-commercial platforms.

Jianghao Lin, Peng Du, Jiaqi Liu, Weite Li, Yong Yu, Weinan Zhang, Yang Cao3/31/2025

arXiv:2503.22508v1 Announce Type: new Abstract: Globalisation and colonisation have led the vast majority of the world to use only a fraction of languages, such as English and French, to communicate, excluding many others. This has severely affected the survivability of many now-deemed vulnerable or endangered languages, such as Occitan and Sicilian. These languages often share some characteristics, such as elements of their grammar and lexicon, with other high-resource languages, e.g. French or Italian. They can be clustered into groups of language varieties with various degrees of mutual intelligibility. Current search systems are not usually trained on many of these low-resource varieties, leading search users to express their needs in a high-resource language instead. This problem is further complicated when most information content is expressed in a high-resource language, inhibiting even more retrieval in low-resource languages. We show that current search systems are not robust across language varieties, severely affecting retrieval effectiveness. Therefore, it would be desirable for these systems to leverage the capabilities of neural models to bridge the differences between these varieties. This can allow users to express their needs in their low-resource variety and retrieve the most relevant documents in a high-resource one. To address this, we propose fine-tuning neural rankers on pairs of language varieties, thereby exposing them to their linguistic similarities. We find that this approach improves the performance of the varieties upon which the models were directly trained, thereby regularising these models to generalise and perform better even on unseen language variety pairs. We also explore whether this approach can transfer across language families and observe mixed results that open doors for future research.

Andreas Chari, Sean MacAvaney, Iadh Ounis3/31/2025

arXiv:2503.09902v1 Announce Type: new Abstract: The rise of personalized conversational search systems has been driven by advancements in Large Language Models (LLMs), enabling these systems to retrieve and generate answers for complex information needs. However, the automatic evaluation of responses generated by Retrieval Augmented Generation (RAG) systems remains an understudied challenge. In this paper, we introduce a new resource for assessing the retrieval effectiveness and relevance of response generated by RAG systems, using a nugget-based evaluation framework. Built upon the foundation of TREC iKAT 2023, our dataset extends to the TREC iKAT 2024 collection, which includes 17 conversations and 20,575 relevance passage assessments, together with 2,279 extracted gold nuggets, and 62 manually written gold answers from NIST assessors. While maintaining the core structure of its predecessor, this new collection enables a deeper exploration of generation tasks in conversational settings. Key improvements in iKAT 2024 include: (1) ``gold nuggets'' -- concise, essential pieces of information extracted from relevant passages of the collection -- which serve as a foundation for automatic response evaluation; (2) manually written answers to provide a gold standard for response evaluation; (3) unanswerable questions to evaluate model hallucination; (4) expanded user personas, providing richer contextual grounding; and (5) a transition from Personal Text Knowledge Base (PTKB) ranking to PTKB classification and selection. Built on this resource, we provide a framework for long-form answer generation evaluation, involving nuggets extraction and nuggets matching, linked to retrieval. This establishes a solid resource for advancing research in personalized conversational search and long-form answer generation. Our resources are publicly available at https://github.com/irlabamsterdam/CONE-RAG.

Zahra Abbasiantaeb, Simon Lupart, Leif Azzopardi, Jeffery Dalton, Mohammad Aliannejadi3/14/2025

arXiv:2503.10277v1 Announce Type: new Abstract: Bio-loggers, electronic devices used to track animal behaviour through various sensors, have become essential in wildlife research. Despite continuous improvements in their capabilities, bio-loggers still face significant limitations in storage, processing, and data transmission due to the constraints of size and weight, which are necessary to avoid disturbing the animals. This study aims to explore how selective data transmission, guided by machine learning, can reduce the energy consumption of bio-loggers, thereby extending their operational lifespan without requiring hardware modifications.

Wilhelm Kerle-Malcharek, Karsten Klein, Martin Wikelski, Falk Schreiber, Timm A. Wild3/14/2025

arXiv:2410.20643v2 Announce Type: replace Abstract: Traditional Point-of-Interest (POI) recommendation systems often lack transparency, interpretability, and scrutability due to their reliance on dense vector-based user embeddings. Furthermore, the cold-start problem -- where systems have insufficient data for new users -- limits their ability to generate accurate recommendations. Existing methods often address this by leveraging similar trajectories from other users, but this approach can be computationally expensive and increases the context length for LLM-based methods, making them difficult to scale. To address these limitations, we propose a method that generates natural language (NL) user profiles from large-scale, location-based social network (LBSN) check-ins, utilizing robust personality assessments and behavioral theories. These NL profiles capture user preferences, routines, and behaviors, improving POI prediction accuracy while offering enhanced transparency. By incorporating NL profiles as system prompts to LLMs, our approach reduces reliance on extensive historical data, while remaining flexible, easily updated, and computationally efficient. Our method is not only competitive with other LLM-based and complex agentic frameworks but is also more scalable for real-world POI recommender systems. Results demonstrate that our approach consistently outperforms baseline methods, offering a more interpretable and resource-efficient solution for POI recommendation systems. Our source code is available at: https://github.com/w11wo/GenUP/.

Wilson Wongso, Hao Xue, Flora D. Salim3/14/2025

arXiv:2410.05536v3 Announce Type: replace Abstract: Climate change-driven floods demand advanced forecasting models, yet Graph Neural Networks (GNNs) underutilize river network topology due to tree-like structures causing over-squashing from high node resistance distances. This study identifies this limitation and introduces a reachability-based graph transformation to densify topological connections, reducing resistance distances. Empirical tests show transformed-GNNs outperform EA-LSTM in extreme flood prediction, achieving 24-h water level accuracy equivalent to EA-LSTM's 14-h forecasts - a 71% improvement in long-term predictive horizon. The dense graph retains flow dynamics across hierarchical river branches, enabling GNNs to capture distal node interactions critical for rare flood events. This topological innovation bridges the gap between river network structure and GNN modeling, offering a scalable framework for early warning systems.

Hongjun Wang, Jiyuan Chen, Yinqiang Zheng, Xuan Song3/14/2025

arXiv:2412.09165v2 Announce Type: replace Abstract: Text embedding has become a foundational technology in natural language processing (NLP) during the deep learning era, driving advancements across a wide array of downstream tasks. While many natural language understanding challenges can now be modeled using generative paradigms and leverage the robust generative and comprehension capabilities of large language models (LLMs), numerous practical applications-such as semantic matching, clustering, and information retrieval-continue to rely on text embeddings for their efficiency and effectiveness. Therefore, how to combine the LLMs and the text embeddings has become one of the hotspots of academic attention in recent years. In this survey, we categorize the interplay between LLMs and text embeddings into three overarching themes: (1) LLM-augmented text embedding, enhancing traditional embedding methods with LLMs; (2) LLMs as text embedders, adapting their innate capabilities for high-quality embedding; and (3) Text embedding understanding with LLMs, leveraging LLMs to analyze and interpret embeddings. By organizing recent works based on interaction patterns rather than specific downstream applications, we offer a novel and systematic overview of contributions from various research and application domains in the era of LLMs. Furthermore, we highlight the unresolved challenges that persisted in the pre-LLM era with pre-trained language models (PLMs) and explore the emerging obstacles brought forth by LLMs. Building on this analysis, we outline prospective directions for the evolution of text embedding, addressing both theoretical and practical opportunities in the rapidly advancing landscape of NLP.

Zhijie Nie, Zhangchi Feng, Mingxin Li, Cunwang Zhang, Yanzhao Zhang, Dingkun Long, Richong Zhang3/14/2025

arXiv:2503.09899v1 Announce Type: new Abstract: Incomplete relevance judgments limit the reusability of test collections. When new systems are compared to previous systems that contributed to the pool, they often face a disadvantage. This is due to pockets of unjudged documents (called holes) in the test collection that the new systems return. The very nature of Conversational Search (CS) means that these holes are potentially larger and more problematic when evaluating systems. In this paper, we aim to extend CS test collections by employing Large Language Models (LLMs) to fill holes by leveraging existing judgments. We explore this problem using TREC iKAT 23 and TREC CAsT 22 collections, where information needs are highly dynamic and the responses are much more varied, leaving bigger holes to fill. Our experiments reveal that CS collections show a trend towards less reusability in deeper turns. Also, fine-tuning the Llama 3.1 model leads to high agreement with human assessors, while few-shot prompting the ChatGPT results in low agreement with humans. Consequently, filling the holes of a new system using ChatGPT leads to a higher change in the location of the new system. While regenerating the assessment pool with few-shot prompting the ChatGPT model and using it for evaluation achieves a high rank correlation with human-assessed pools. We show that filling the holes using few-shot training the Llama 3.1 model enables a fairer comparison between the new system and the systems contributed to the pool. Our hole-filling model based on few-shot training of the Llama 3.1 model can improve the reusability of test collections.

Zahra Abbasiantaeb, Chuan Meng, Leif Azzopardi, Mohammad Aliannejadi3/14/2025

arXiv:2503.10166v1 Announce Type: new Abstract: With the proliferation of images in online content, language-guided image retrieval (LGIR) has emerged as a research hotspot over the past decade, encompassing a variety of subtasks with diverse input forms. While the development of large multimodal models (LMMs) has significantly facilitated these tasks, existing approaches often address them in isolation, requiring the construction of separate systems for each task. This not only increases system complexity and maintenance costs, but also exacerbates challenges stemming from language ambiguity and complex image content, making it difficult for retrieval systems to provide accurate and reliable results. To this end, we propose ImageScope, a training-free, three-stage framework that leverages collective reasoning to unify LGIR tasks. The key insight behind the unification lies in the compositional nature of language, which transforms diverse LGIR tasks into a generalized text-to-image retrieval process, along with the reasoning of LMMs serving as a universal verification to refine the results. To be specific, in the first stage, we improve the robustness of the framework by synthesizing search intents across varying levels of semantic granularity using chain-of-thought (CoT) reasoning. In the second and third stages, we then reflect on retrieval results by verifying predicate propositions locally, and performing pairwise evaluations globally. Experiments conducted on six LGIR datasets demonstrate that ImageScope outperforms competitive baselines. Comprehensive evaluations and ablation studies further confirm the effectiveness of our design.

Pengfei Luo, Jingbo Zhou, Tong Xu, Yuan Xia, Linli Xu, Enhong Chen3/14/2025