cs.RO
299 postsarXiv:2501.06783v1 Announce Type: new Abstract: This paper introduces a cost-effective robotic handwriting system designed to replicate human-like handwriting with high precision. Combining a Raspberry Pi Pico microcontroller, 3D-printed components, and a machine learning-based handwriting generation model implemented via TensorFlow.js, the system converts user-supplied text into realistic stroke trajectories. By leveraging lightweight 3D-printed materials and efficient mechanical designs, the system achieves a total hardware cost of approximately \$56, significantly undercutting commercial alternatives. Experimental evaluations demonstrate handwriting precision within $\pm$0.3 millimeters and a writing speed of approximately 200 mm/min, positioning the system as a viable solution for educational, research, and assistive applications. This study seeks to lower the barriers to personalized handwriting technologies, making them accessible to a broader audience.
arXiv:2501.06897v1 Announce Type: new Abstract: We introduce ActiveGAMER, an active mapping system that utilizes 3D Gaussian Splatting (3DGS) to achieve high-quality, real-time scene mapping and exploration. Unlike traditional NeRF-based methods, which are computationally demanding and restrict active mapping performance, our approach leverages the efficient rendering capabilities of 3DGS, allowing effective and efficient exploration in complex environments. The core of our system is a rendering-based information gain module that dynamically identifies the most informative viewpoints for next-best-view planning, enhancing both geometric and photometric reconstruction accuracy. ActiveGAMER also integrates a carefully balanced framework, combining coarse-to-fine exploration, post-refinement, and a global-local keyframe selection strategy to maximize reconstruction completeness and fidelity. Our system autonomously explores and reconstructs environments with state-of-the-art geometric and photometric accuracy and completeness, significantly surpassing existing approaches in both aspects. Extensive evaluations on benchmark datasets such as Replica and MP3D highlight ActiveGAMER's effectiveness in active mapping tasks.
arXiv:2501.06660v1 Announce Type: new Abstract: Online mapping reduces the reliance of autonomous vehicles on high-definition (HD) maps, significantly enhancing scalability. However, recent advancements often overlook cross-sensor configuration generalization, leading to performance degradation when models are deployed on vehicles with different camera intrinsics and extrinsics. With the rapid evolution of novel view synthesis methods, we investigate the extent to which these techniques can be leveraged to address the sensor configuration generalization challenge. We propose a novel framework leveraging Gaussian splatting to reconstruct scenes and render camera images in target sensor configurations. The target config sensor data, along with labels mapped to the target config, are used to train online mapping models. Our proposed framework on the nuScenes and Argoverse 2 datasets demonstrates a performance improvement of 18% through effective dataset augmentation, achieves faster convergence and efficient training, and exceeds state-of-the-art performance when using only 25% of the original training data. This enables data reuse and reduces the need for laborious data labeling. Project page at https://henryzhangzhy.github.io/mapgs.
arXiv:2501.06719v1 Announce Type: new Abstract: This project introduces a hierarchical planner integrating Linear Temporal Logic (LTL) constraints with natural language prompting for robot motion planning. The framework decomposes maps into regions, generates directed graphs, and converts them into transition systems for high-level planning. Text instructions are translated into LTL formulas and converted to Deterministic Finite Automata (DFA) for sequential goal-reaching tasks while adhering to safety constraints. High-level plans, derived via Breadth-First Search (BFS), guide low-level planners like Exploring Random Trees (RRT) and Probabilistic Roadmaps (PRM) for obstacle-avoidant navigation along with LTL tasks. The approach demonstrates adaptability to various task complexities, though challenges such as graph construction overhead and suboptimal path generation remain. Future directions include extending to considering terrain conditions and incorporating higher-order dynamics.
arXiv:2501.06806v1 Announce Type: new Abstract: The presence of post-stroke grasping deficiencies highlights the critical need for the development and implementation of advanced compensatory strategies. This paper introduces a novel system to aid chronic stroke survivors through the development of a soft, vision-based, tactile-enabled extra robotic finger. By incorporating vision-based tactile sensing, the system autonomously adjusts grip force in response to slippage detection. This synergy not only ensures mechanical stability but also enriches tactile feedback, mimicking the dynamics of human-object interactions. At the core of our approach is a transformer-based framework trained on a comprehensive tactile dataset encompassing objects with a wide range of morphological properties, including variations in shape, size, weight, texture, and hardness. Furthermore, we validated the system's robustness in real-world applications, where it successfully manipulated various everyday objects. The promising results highlight the potential of this approach to improve the quality of life for stroke survivors.
arXiv:2501.06867v1 Announce Type: new Abstract: The fundamental role of personality in shaping interactions is increasingly being exploited in robotics. A carefully designed robotic personality has been shown to improve several key aspects of Human-Robot Interaction (HRI). However, the fragmentation and rigidity of existing approaches reveal even greater challenges when applied to non-humanoid robots. On one hand, the state of the art is very dispersed; on the other hand, Industry 4.0 is moving towards a future where humans and industrial robots are going to coexist. In this context, the proper design of a robotic personality can lead to more successful interactions. This research takes a first step in that direction by integrating a comprehensive cognitive architecture built upon the definition of robotic personality - validated on humanoid robots - into a robotic Kinova Jaco2 arm. The robot personality is defined through the cognitive architecture as a vector in the three-dimensional space encompassing Conscientiousness, Extroversion, and Agreeableness, affecting how actions are executed, the action selection process, and the internal reaction to environmental stimuli. Our main objective is to determine whether users perceive distinct personalities in the robot, regardless of its shape, and to understand the role language plays in shaping these perceptions. To achieve this, we conducted a user study comprising 144 sessions of a collaborative game between a Kinova Jaco2 arm and participants, where the robot's behavior was influenced by its assigned personality. Furthermore, we compared two conditions: in the first, the robot communicated solely through gestures and action choices, while in the second, it also utilized verbal interaction.
arXiv:2501.06605v1 Announce Type: new Abstract: Efficient control in long-horizon robotic manipulation is challenging due to complex representation and policy learning requirements. Model-based visual reinforcement learning (RL) has shown great potential in addressing these challenges but still faces notable limitations, particularly in handling sparse rewards and complex visual features in long-horizon environments. To address these limitations, we propose the Recognize-Sense-Plan-Act (RSPA) pipeline for long-horizon tasks and further introduce RoboHorizon, an LLM-assisted multi-view world model tailored for long-horizon robotic manipulation. In RoboHorizon, pre-trained LLMs generate dense reward structures for multi-stage sub-tasks based on task language instructions, enabling robots to better recognize long-horizon tasks. Keyframe discovery is then integrated into the multi-view masked autoencoder (MAE) architecture to enhance the robot's ability to sense critical task sequences, strengthening its multi-stage perception of long-horizon processes. Leveraging these dense rewards and multi-view representations, a robotic world model is constructed to efficiently plan long-horizon tasks, enabling the robot to reliably act through RL algorithms. Experiments on two representative benchmarks, RLBench and FurnitureBench, show that RoboHorizon outperforms state-of-the-art visual model-based RL methods, achieving a 23.35% improvement in task success rates on RLBench's 4 short-horizon tasks and a 29.23% improvement on 6 long-horizon tasks from RLBench and 3 furniture assembly tasks from FurnitureBench.
arXiv:2501.06639v1 Announce Type: new Abstract: This paper presents a novel method for accelerating path-planning tasks in unknown scenes with obstacles by utilizing Wasserstein Generative Adversarial Networks (WGANs) with Gradient Penalty (GP) to approximate the distribution of waypoints for a collision-free path using the Rapidly-exploring Random Tree algorithm. Our approach involves conditioning the WGAN-GP with a forward diffusion process in a continuous latent space to handle multimodal datasets effectively. We also propose encoding the waypoints of a collision-free path as a matrix, where the multidimensional ordering of the waypoints is naturally preserved. This method not only improves model learning but also enhances training convergence. Furthermore, we propose a method to assess whether the trained model fails to accurately capture the true waypoints. In such cases, we revert to uniform sampling to ensure the algorithm's probabilistic completeness; a process that traditionally involves manually determining an optimal ratio for each scenario in other machine learning-based methods. Our experiments demonstrate promising results in accelerating path-planning tasks under critical time constraints. The source code is openly available at https://bitbucket.org/joro3001/imagewgangpplanning/src/master/.
arXiv:2501.06680v1 Announce Type: new Abstract: Autonomous driving (AD) has experienced significant improvements in recent years and achieved promising 3D detection, classification, and localization results. However, many challenges remain, e.g. semantic understanding of pedestrians' behaviors, and downstream handling for pedestrian interactions. Recent studies in applications of Large Language Models (LLM) and Vision-Language Models (VLM) have achieved promising results in scene understanding and high-level maneuver planning in diverse traffic scenarios. However, deploying the billion-parameter LLMs to vehicles requires significant computation and memory resources. In this paper, we analyzed effective knowledge distillation of semantic labels to smaller Vision networks, which can be used for the semantic representation of complex scenes for downstream decision-making for planning and control.
arXiv:2501.06693v1 Announce Type: new Abstract: Sim-to-real gap has long posed a significant challenge for robot learning in simulation, preventing the deployment of learned models in the real world. Previous work has primarily focused on domain randomization and system identification to mitigate this gap. However, these methods are often limited by the inherent constraints of the simulation and graphics engines. In this work, we propose Vid2Sim, a novel framework that effectively bridges the sim2real gap through a scalable and cost-efficient real2sim pipeline for neural 3D scene reconstruction and simulation. Given a monocular video as input, Vid2Sim can generate photorealistic and physically interactable 3D simulation environments to enable the reinforcement learning of visual navigation agents in complex urban environments. Extensive experiments demonstrate that Vid2Sim significantly improves the performance of urban navigation in the digital twins and real world by 31.2% and 68.3% in success rate compared with agents trained with prior simulation methods.
arXiv:2501.06493v1 Announce Type: new Abstract: Efficient motion planning for Aerial Manipulators (AMs) is essential for tackling complex manipulation tasks, yet achieving coupled trajectory planning remains challenging. In this work, we propose, to the best of our knowledge, the first whole-body integrated motion planning framework for aerial manipulators, which is facilitated by an improved Safe Flight Corridor (SFC) generation strategy and high-dimensional collision-free trajectory planning. In particular, we formulate an optimization problem to generate feasible trajectories for both the quadrotor and manipulator while ensuring collision avoidance, dynamic feasibility, kinematic feasibility, and waypoint constraints. To achieve collision avoidance, we introduce a variable geometry approximation method, which dynamically models the changing collision volume induced by different manipulator configurations. Moreover, waypoint constraints in our framework are defined in $\mathrm{SE(3)\times\mathbb{R}^3}$, allowing the aerial manipulator to traverse specified positions while maintaining desired attitudes and end-effector states. The effectiveness of our framework is validated through comprehensive simulations and real-world experiments across various environments.
arXiv:2501.06263v1 Announce Type: new Abstract: Scanning large-scale surfaces is widely demanded in surface reconstruction applications and detecting defects in industries' quality control and maintenance stages. Traditional vision-based tactile sensors have shown promising performance in high-resolution shape reconstruction while suffering limitations such as small sensing areas or susceptibility to damage when slid across surfaces, making them unsuitable for continuous sensing on large surfaces. To address these shortcomings, we introduce a novel vision-based tactile sensor designed for continuous surface sensing applications. Our design uses an elastomeric belt and two wheels to continuously scan the target surface. The proposed sensor showed promising results in both shape reconstruction and surface fusion, indicating its applicability. The dot product of the estimated and reference surface normal map is reported over the sensing area and for different scanning speeds. Results indicate that the proposed sensor can rapidly scan large-scale surfaces with high accuracy at speeds up to 45 mm/s.
arXiv:2501.06528v1 Announce Type: new Abstract: Robotic systems are frequently deployed in missions that are dull, dirty, and dangerous, where ensuring their safety is of paramount importance when designing stabilizing controllers to achieve their desired goals. This paper addresses the problem of safe circumnavigation around a hostile target by a nonholonomic robot, with the objective of maintaining a desired safe distance from the target. Our solution approach involves incorporating an auxiliary circle into the problem formulation, which assists in navigating the robot around the target using available range-based measurements. By leveraging the concept of a barrier Lyapunov function, we propose a novel control law that ensures stable circumnavigation around the target while preventing the robot from entering the safety circle. This controller is designed based on a parameter that depends on the radii of three circles, namely the stabilizing circle, the auxiliary circle, and the safety circle. By identifying an appropriate range for this design parameter, we rigorously prove the stability of the desired equilibrium of the closed-loop system. Additionally, we provide an analysis of the robot's motion within the auxiliary circle, which is influenced by a gain parameter in the proposed controller. Simulation and experimental results are presented to illustrate the key theoretical developments.
arXiv:2501.06847v1 Announce Type: new Abstract: Science laboratory automation enables accelerated discovery in life sciences and materials. However, it requires interdisciplinary collaboration to address challenges such as robust and flexible autonomy, reproducibility, throughput, standardization, the role of human scientists, and ethics. This article highlights these issues, reflecting perspectives from leading experts in laboratory automation across different disciplines of the natural sciences.
arXiv:2501.06348v1 Announce Type: new Abstract: Understanding the motivations underlying the human inclination to automate tasks is vital to developing truly helpful robots integrated into daily life. Accordingly, we ask: are individuals more inclined to automate chores based on the time they consume or the feelings experienced while performing them? This study explores these preferences and whether they vary across different social groups (i.e., gender category and income level). Leveraging data from the BEHAVIOR-1K dataset, the American Time-Use Survey, and the American Time-Use Survey Well-Being Module, we investigate the relationship between the desire for automation, time spent on daily activities, and their associated feelings - Happiness, Meaningfulness, Sadness, Painfulness, Stressfulness, or Tiredness. Our key findings show that, despite common assumptions, time spent does not strongly relate to the desire for automation for the general population. For the feelings analyzed, only happiness and pain are key indicators. Significant differences by gender and economic level also emerged: Women prefer to automate stressful activities, whereas men prefer to automate those that make them unhappy; mid-income individuals prioritize automating less enjoyable and meaningful activities, while low and high-income show no significant correlations. We hope our research helps motivate technologies to develop robots that match the priorities of potential users, moving domestic robotics toward more socially relevant solutions. We open-source all the data, including an online tool that enables the community to replicate our analysis and explore additional trends at https://hri1260.github.io/why-automate-this.
arXiv:2501.06235v1 Announce Type: new Abstract: 4D panoptic LiDAR segmentation is essential for scene understanding in autonomous driving and robotics ,combining semantic and instance segmentation with temporal consistency.Current methods, like 4D-PLS and 4D-STOP, use a tracking-by-detection methodology, employing deep learning networks to perform semantic and instance segmentation on each frame. To maintain temporal consistency, large-size instances detected in the current frame are compared and associated with instances within a temporal window that includes the current and preceding frames. However, their reliance on short-term instance detection, lack of motion estimation, and exclusion of small-sized instances lead to frequent identity switches and reduced tracking performance. We address these issues with the NextStop1 tracker, which integrates Kalman filter-based motion estimation, data association, and lifespan management, along with a tracklet state concept to improve prioritization. Evaluated using the LiDAR Segmentation and Tracking Quality (LSTQ) metric on the SemanticKITTI validation set, NextStop demonstrated enhanced tracking performance, particularly for small-sized objects like people and bicyclists, with fewer ID switches, earlier tracking initiation, and improved reliability in complex environments. The source code is available at https://github.com/AIROTAU/NextStopTracker
arXiv:2501.06262v1 Announce Type: new Abstract: TinyML has made deploying deep learning models on low-power edge devices feasible, creating new opportunities for real-time perception in constrained environments. However, the adaptability of such deep learning methods remains limited to data drift adaptation, lacking broader capabilities that account for the environment's underlying dynamics and inherent uncertainty. Deep learning's scaling laws, which counterbalance this limitation by massively up-scaling data and model size, cannot be applied when deploying on the Edge, where deep learning limitations are further amplified as models are scaled down for deployment on resource-constrained devices. This paper presents a smart agentic system capable of performing on-device perception and planning, enabling active sensing on the edge. By incorporating active inference into our solution, our approach extends beyond deep learning capabilities, allowing the system to plan in dynamic environments while operating in real time with a modest total model size of 2.3 MB. We showcase our proposed system by creating and deploying a saccade agent connected to an IoT camera with pan and tilt capabilities on an NVIDIA Jetson embedded device. The saccade agent controls the camera's field of view following optimal policies derived from the active inference principles, simulating human-like saccadic motion for surveillance and robotics applications.
arXiv:2501.06566v1 Announce Type: new Abstract: We propose the Cooperative Aerial Robot Inspection Challenge (CARIC), a simulation-based benchmark for motion planning algorithms in heterogeneous multi-UAV systems. CARIC features UAV teams with complementary sensors, realistic constraints, and evaluation metrics prioritizing inspection quality and efficiency. It offers a ready-to-use perception-control software stack and diverse scenarios to support the development and evaluation of task allocation and motion planning algorithms. Competitions using CARIC were held at IEEE CDC 2023 and the IROS 2024 Workshop on Multi-Robot Perception and Navigation, attracting innovative solutions from research teams worldwide. This paper examines the top three teams from CDC 2023, analyzing their exploration, inspection, and task allocation strategies while drawing insights into their performance across scenarios. The results highlight the task's complexity and suggest promising directions for future research in cooperative multi-UAV systems.
arXiv:2501.06431v1 Announce Type: new Abstract: Recent photorealistic Novel View Synthesis (NVS) advances have increasingly gained attention. However, these approaches remain constrained to small indoor scenes. While optimization-based NVS models have attempted to address this, generalizable feed-forward methods, offering significant advantages, remain underexplored. In this work, we train PixelNeRF, a feed-forward NVS model, on the large-scale UrbanScene3D dataset. We propose four training strategies to cluster and train on this dataset, highlighting that performance is hindered by limited view overlap. To address this, we introduce Aug3D, an augmentation technique that leverages reconstructed scenes using traditional Structure-from-Motion (SfM). Aug3D generates well-conditioned novel views through grid and semantic sampling to enhance feed-forward NVS model learning. Our experiments reveal that reducing the number of views per cluster from 20 to 10 improves PSNR by 10%, but the performance remains suboptimal. Aug3D further addresses this by combining the newly generated novel views with the original dataset, demonstrating its effectiveness in improving the model's ability to predict novel views.
arXiv:2501.06904v1 Announce Type: new Abstract: The challenge of traversability estimation is a crucial aspect of autonomous navigation in unstructured outdoor environments such as forests. It involves determining whether certain areas are passable or risky for robots, taking into account factors like terrain irregularities, slopes, and potential obstacles. The majority of current methods for traversability estimation operate on the assumption of an offline computation, overlooking the significant influence of the robot's heading direction on accurate traversability estimates. In this work, we introduce a deep neural network that uses detailed geometric environmental data together with the robot's recent movement characteristics. This fusion enables the generation of robot direction awareness and continuous traversability estimates, essential for enhancing robot autonomy in challenging terrains like dense forests. The efficacy and significance of our approach are underscored by experiments conducted on both simulated and real robotic platforms in various environments, yielding quantitatively superior performance results compared to existing methods. Moreover, we demonstrate that our method, trained exclusively in a high-fidelity simulated setting, can accurately predict traversability in real-world applications without any real data collection. Our experiments showcase the advantages of our method for optimizing path-planning and exploration tasks within difficult outdoor environments, underscoring its practicality for effective, real-world robotic navigation. In the spirit of collaborative advancement, we have made the code implementation available to the public.