cs.RO
174 postsarXiv:2501.00585v1 Announce Type: new Abstract: The unpredictable nature of outdoor settings introduces numerous safety concerns, making hazard detection crucial for safe navigation. This paper introduces a novel system for sidewalk safety navigation utilizing a hybrid approach that combines a Variational Autoencoder (VAE) with a One-Class Support Vector Machine (OCSVM). The system is designed to detect anomalies on sidewalks that could potentially pose walking hazards. A dataset comprising over 15,000 training frames and 5,000 testing frames was collected using video recordings, capturing various sidewalk scenarios, including normal and hazardous conditions. During deployment, the VAE utilizes its reconstruction mechanism to detect anomalies within a frame. Poor reconstruction by the VAE implies the presence of an anomaly, after which the OCSVM is used to confirm whether the anomaly is hazardous or non-hazardous. The proposed VAE model demonstrated strong performance, with a high Area Under the Curve (AUC) of 0.94, effectively distinguishing anomalies that could be potential hazards. The OCSVM is employed to reduce the detection of false hazard anomalies, such as manhole or water valve covers. This approach achieves an accuracy of 91.4%, providing a highly reliable system for distinguishing between hazardous and non-hazardous scenarios. These results suggest that the proposed system offers a robust solution for hazard detection in uncertain environments.
arXiv:2501.01119v1 Announce Type: new Abstract: Open-vocabulary panoptic reconstruction offers comprehensive scene understanding, enabling advances in embodied robotics and photorealistic simulation. In this paper, we propose PanopticRecon++, an end-to-end method that formulates panoptic reconstruction through a novel cross-attention perspective. This perspective models the relationship between 3D instances (as queries) and the scene's 3D embedding field (as keys) through their attention map. Unlike existing methods that separate the optimization of queries and keys or overlook spatial proximity, PanopticRecon++ introduces learnable 3D Gaussians as instance queries. This formulation injects 3D spatial priors to preserve proximity while maintaining end-to-end optimizability. Moreover, this query formulation facilitates the alignment of 2D open-vocabulary instance IDs across frames by leveraging optimal linear assignment with instance masks rendered from the queries. Additionally, we ensure semantic-instance segmentation consistency by fusing query-based instance segmentation probabilities with semantic probabilities in a novel panoptic head supervised by a panoptic loss. During training, the number of instance query tokens dynamically adapts to match the number of objects. PanopticRecon++ shows competitive performance in terms of 3D and 2D segmentation and reconstruction performance on both simulation and real-world datasets, and demonstrates a user case as a robot simulator. Our project website is at: https://yuxuan1206.github.io/panopticrecon_pp/
arXiv:2501.00352v1 Announce Type: new Abstract: Understanding geometric, semantic, and instance information in 3D scenes from sequential video data is essential for applications in robotics and augmented reality. However, existing Simultaneous Localization and Mapping (SLAM) methods generally focus on either geometric or semantic reconstruction. In this paper, we introduce PanoSLAM, the first SLAM system to integrate geometric reconstruction, 3D semantic segmentation, and 3D instance segmentation within a unified framework. Our approach builds upon 3D Gaussian Splatting, modified with several critical components to enable efficient rendering of depth, color, semantic, and instance information from arbitrary viewpoints. To achieve panoptic 3D scene reconstruction from sequential RGB-D videos, we propose an online Spatial-Temporal Lifting (STL) module that transfers 2D panoptic predictions from vision models into 3D Gaussian representations. This STL module addresses the challenges of label noise and inconsistencies in 2D predictions by refining the pseudo labels across multi-view inputs, creating a coherent 3D representation that enhances segmentation accuracy. Our experiments show that PanoSLAM outperforms recent semantic SLAM methods in both mapping and tracking accuracy. For the first time, it achieves panoptic 3D reconstruction of open-world environments directly from the RGB-D video. (https://github.com/runnanchen/PanoSLAM)
arXiv:2501.00510v1 Announce Type: new Abstract: This paper addresses the scarcity of large-scale datasets for accurate object-in-hand pose estimation, which is crucial for robotic in-hand manipulation within the ``Perception-Planning-Control" paradigm. Specifically, we introduce VinT-6D, the first extensive multi-modal dataset integrating vision, touch, and proprioception, to enhance robotic manipulation. VinT-6D comprises 2 million VinT-Sim and 0.1 million VinT-Real splits, collected via simulations in MuJoCo and Blender and a custom-designed real-world platform. This dataset is tailored for robotic hands, offering models with whole-hand tactile perception and high-quality, well-aligned data. To the best of our knowledge, the VinT-Real is the largest considering the collection difficulties in the real-world environment so that it can bridge the gap of simulation to real compared to the previous works. Built upon VinT-6D, we present a benchmark method that shows significant improvements in performance by fusing multi-modal information. The project is available at https://VinT-6D.github.io/.
arXiv:2501.00890v1 Announce Type: new Abstract: Forecasting vehicle behavior within complex traffic environments is pivotal within Intelligent Transportation Systems (ITS). Though this technology plays a significant role in alleviating the prevalent operational difficulties in logistics and transportation systems, the precise prediction of vehicle trajectories still poses a substantial challenge. To address this, our study introduces the Spatio Temporal Attention-based methodology for Target Vehicle Trajectory Prediction (STATVTPred). This approach integrates Global Positioning System(GPS) localization technology to track target movement and dynamically predict the vehicle's future path using comprehensive spatio-temporal trajectory data. We map the vehicle trajectory onto a directed graph, after which spatial attributes are extracted via a Graph Attention Networks(GATs). The Transformer technology is employed to yield temporal features from the sequence. These elements are then amalgamated with local road network structure maps to filter and deliver a smooth trajectory sequence, resulting in precise vehicle trajectory prediction.This study validates our proposed STATVTPred method on T-Drive and Chengdu taxi-trajectory datasets. The experimental results demonstrate that STATVTPred achieves 6.38% and 10.55% higher Average Match Rate (AMR) than the Transformer model on the Beijing and Chengdu datasets, respectively. Compared to the LSTM Encoder-Decoder model, STATVTPred boosts AMR by 37.45% and 36.06% on the same datasets. This is expected to establish STATVTPred as a new approach for handling trajectory prediction of targets in logistics and transportation scenarios, thereby enhancing prediction accuracy.
arXiv:2501.01115v1 Announce Type: new Abstract: This paper describes the development of a cost-effective yet precise indoor robot navigation system composed of a custom robot controller board and an indoor positioning system. First, the proposed robot controller board has been specially designed for emerging IoT-based robot applications and is capable of driving two 6-Amp motor channels. The controller board also embeds an on-board micro-controller with WIFI connectivity, enabling robot-to-server communications for IoT applications. Then, working together with the robot controller board, the proposed positioning system detects the robot's location using a down-looking webcam and uses the robot's position on the webcam images to estimate the real-world position of the robot in the environment. The positioning system can then send commands via WIFI to the robot in order to steer it to any arbitrary location in the environment. Our experiments show that the proposed system reaches a navigation error smaller or equal to 0.125 meters while being more than two orders of magnitude more cost-effective compared to off-the-shelve motion capture (MOCAP) positioning systems.
arXiv:2501.00110v1 Announce Type: new Abstract: Large-Scale Multi-Agent Systems (LS-MAS) consist of several autonomous components, interacting in a non-trivial way, so that the emerging behaviour of the ensemble depends on the individual dynamics of the components and their reciprocal interactions. These models can describe a rich variety of natural systems, as well as artificial ones, characterised by unparalleled scalability, robustness, and flexibility. Indeed, a crucial objective is devising efficient strategies to model and control the spatial behaviours of LS-MAS to achieve specific goals. However, the inherent complexity of these systems and the wide spectrum of their emerging behaviours pose significant challenges. The overarching goal of this thesis is, therefore, to advance methods for modelling, analyzing and controlling the spatial behaviours of LS-MAS, with applications to cellular populations and swarm robotics. The thesis begins with an overview of the existing Literature, and is then organized into two distinct parts. In the context of swarm robotics, Part I deals with distributed control algorithms to spatially organize agents on geometric patterns. The contribution is twofold, encompassing both the development of original control algorithms, and providing a novel formal analysis, which allows to guarantee the emergence of specific geometric patterns. In Part II, looking at the spatial behaviours of biological agents, experiments are carried out to study the movement of microorganisms and their response to light stimuli. This allows the derivation and parametrization of mathematical models that capture these behaviours, and pave the way for the development of innovative approaches for the spatial control of microorganisms. The results presented in the thesis were developed by leveraging formal analytical tools, simulations, and experiments, using innovative platforms and original computational frameworks.
arXiv:2501.00296v1 Announce Type: new Abstract: Our aim is to learn to solve long-horizon decision-making problems in highly-variable, combinatorially-complex robotics domains given raw sensor input in the form of images. Previous work has shown that one way to achieve this aim is to learn a structured abstract transition model in the form of symbolic predicates and operators, and then plan within this model to solve novel tasks at test time. However, these learned models do not ground directly into pixels from just a handful of demonstrations. In this work, we propose to invent predicates that operate directly over input images by leveraging the capabilities of pretrained vision-language models (VLMs). Our key idea is that, given a set of demonstrations, a VLM can be used to propose a set of predicates that are potentially relevant for decision-making and then to determine the truth values of these predicates in both the given demonstrations and new image inputs. We build upon an existing framework for predicate invention, which generates feature-based predicates operating on object-centric states, to also generate visual predicates that operate on images. Experimentally, we show that our approach -- pix2pred -- is able to invent semantically meaningful predicates that enable generalization to novel, complex, and long-horizon tasks across two simulated robotic environments.
arXiv:2501.00390v1 Announce Type: new Abstract: In their seminal work, Gauci et al. (2014) studied the fundamental task of aggregation, wherein multiple robots need to gather without an a priori agreed-upon meeting location, using minimal hardware. That paper considered differential-drive robots that are memoryless and unable to compute. Moreover, the robots cannot communicate with one another and are only equipped with a simple sensor that determines whether another robot is directly in front of them. Despite those severe limitations, Gauci et al. introduced a controller and proved mathematically that it aggregates a system of two robots for any initial state. Unfortunately, for larger systems, the same controller aggregates empirically in many cases but not all. Thus, the question of whether a controller exists that aggregates for any number of robots remains open. In this paper, we show that no such controller exists by investigating the geometric structure of controllers. In addition, we disprove the aggregation proof of the paper above for two robots and present an alternative controller alongside a simple and rigorous aggregation proof.
arXiv:2501.00507v1 Announce Type: new Abstract: In this paper, we present the main features of Dynamic Rapidly-exploring Generalized Bur Tree (DRGBT) algorithm, a sampling-based planner for dynamic environments. We provide a detailed time analysis and appropriate scheduling to facilitate a real-time operation. To this end, an extensive analysis is conducted to identify the time-critical routines and their dependence on the number of obstacles. Furthermore, information about the distance to obstacles is used to compute a structure called dynamic expanded bubble of free configuration space, which is then utilized to establish sufficient conditions for a guaranteed safe motion of the robot while satisfying all kinematic constraints. An extensive randomized simulation trial is conducted to compare the proposed algorithm to a competing state-of-the-art method. Finally, an experimental study on a real robot is carried out covering a variety of scenarios including those with human presence. The results show the effectiveness and feasibility of real-time execution of the proposed motion planning algorithm within a typical sensor-based arrangement, using cheap hardware and sequential architecture, without the necessity for GPUs or heavy parallelization.
arXiv:2501.00657v1 Announce Type: new Abstract: Relative pose (position and orientation) estimation is an essential component of many robotics applications. Fiducial markers, such as the AprilTag visual fiducial system, yield a relative pose measurement from a single marker detection and provide a powerful tool for pose estimation. In this paper, we perform a Lie algebraic nonlinear observability analysis on a nonlinear dual quaternion system that is composed of a relative pose measurement model and a relative motion model. We prove that many common dual quaternion expressions yield Jacobian matrices with advantageous block structures and rank properties that are beneficial for analysis. We show that using a dual quaternion representation yields an observability matrix with a simple block triangular structure and satisfies the necessary full rank condition.
arXiv:2501.00785v1 Announce Type: new Abstract: Translating human intent into robot commands is crucial for the future of service robots in an aging society. Existing Human-Robot Interaction (HRI) systems relying on gestures or verbal commands are impractical for the elderly due to difficulties with complex syntax or sign language. To address the challenge, this paper introduces a multi-modal interaction framework that combines voice and deictic posture information to create a more natural HRI system. The visual cues are first processed by the object detection model to gain a global understanding of the environment, and then bounding boxes are estimated based on depth information. By using a large language model (LLM) with voice-to-text commands and temporally aligned selected bounding boxes, robot action sequences can be generated, while key control syntax constraints are applied to avoid potential LLM hallucination issues. The system is evaluated on real-world tasks with varying levels of complexity using a Universal Robots UR3e manipulator. Our method demonstrates significantly better performance in HRI in terms of accuracy and robustness. To benefit the research community and the general public, we will make our code and design open-source.
arXiv:2501.00915v1 Announce Type: new Abstract: Machine learning has demonstrated remarkable promise for solving the trajectory generation problem and in paving the way for online use of trajectory optimization for resource-constrained spacecraft. However, a key shortcoming in current machine learning-based methods for trajectory generation is that they require large datasets and even small changes to the original trajectory design requirements necessitate retraining new models to learn the parameter-to-solution mapping. In this work, we leverage compositional diffusion modeling to efficiently adapt out-of-distribution data and problem variations in a few-shot framework for 6 degree-of-freedom (DoF) powered descent trajectory generation. Unlike traditional deep learning methods that can only learn the underlying structure of one specific trajectory optimization problem, diffusion models are a powerful generative modeling framework that represents the solution as a probability density function (PDF) and this allows for the composition of PDFs encompassing a variety of trajectory design specifications and constraints. We demonstrate the capability of compositional diffusion models for inference-time 6 DoF minimum-fuel landing site selection and composable constraint representations. Using these samples as initial guesses for 6 DoF powered descent guidance enables dynamically feasible and computationally efficient trajectory generation.
arXiv:2501.01037v1 Announce Type: new Abstract: Multi-sensor fusion models play a crucial role in autonomous driving perception, particularly in tasks like 3D object detection and HD map construction. These models provide essential and comprehensive static environmental information for autonomous driving systems. While camera-LiDAR fusion methods have shown promising results by integrating data from both modalities, they often depend on complete sensor inputs. This reliance can lead to low robustness and potential failures when sensors are corrupted or missing, raising significant safety concerns. To tackle this challenge, we introduce the Multi-Sensor Corruption Benchmark (MSC-Bench), the first comprehensive benchmark aimed at evaluating the robustness of multi-sensor autonomous driving perception models against various sensor corruptions. Our benchmark includes 16 combinations of corruption types that disrupt both camera and LiDAR inputs, either individually or concurrently. Extensive evaluations of six 3D object detection models and four HD map construction models reveal substantial performance degradation under adverse weather conditions and sensor failures, underscoring critical safety issues. The benchmark toolkit and affiliated code and model checkpoints have been made publicly accessible.
arXiv:2501.00038v1 Announce Type: new Abstract: Emotion recognition and touch gesture decoding are crucial for advancing human-robot interaction (HRI), especially in social environments where emotional cues and tactile perception play important roles. However, many humanoid robots, such as Pepper, Nao, and Furhat, lack full-body tactile skin, limiting their ability to engage in touch-based emotional and gesture interactions. In addition, vision-based emotion recognition methods usually face strict GDPR compliance challenges due to the need to collect personal facial data. To address these limitations and avoid privacy issues, this paper studies the potential of using the sounds produced by touching during HRI to recognise tactile gestures and classify emotions along the arousal and valence dimensions. Using a dataset of tactile gestures and emotional interactions from 28 participants with the humanoid robot Pepper, we design an audio-only lightweight touch gesture and emotion recognition model with only 0.24M parameters, 0.94MB model size, and 0.7G FLOPs. Experimental results show that the proposed sound-based touch gesture and emotion recognition model effectively recognises the arousal and valence states of different emotions, as well as various tactile gestures, when the input audio length varies. The proposed model is low-latency and achieves similar results as well-known pretrained audio neural networks (PANNs), but with much smaller FLOPs, parameters, and model size.
arXiv:2501.00076v1 Announce Type: new Abstract: The ability to generate and recognize sequential data is fundamental for autonomous systems operating in dynamic environments. Inspired by the key principles of the brain-predictive coding and the Bayesian brain-we propose a novel stochastic Recurrent Neural Network with Parametric Biases (RNNPB). The proposed model incorporates stochasticity into the latent space using the reparameterization trick used in variational autoencoders. This approach enables the model to learn probabilistic representations of multidimensional sequences, capturing uncertainty and enhancing robustness against overfitting. We tested the proposed model on a robotic motion dataset to assess its performance in generating and recognizing temporal patterns. The experimental results showed that the stochastic RNNPB model outperformed its deterministic counterpart in generating and recognizing motion sequences. The results highlighted the proposed model's capability to quantify and adjust uncertainty during both learning and inference. The stochasticity resulted in a continuous latent space representation, facilitating stable motion generation and enhanced generalization when recognizing novel sequences. Our approach provides a biologically inspired framework for modeling temporal patterns and advances the development of robust and adaptable systems in artificial intelligence and robotics.
arXiv:2501.00112v1 Announce Type: new Abstract: In this work, we introduce a method for predicting environment steppability -- the ability of a legged robot platform to place a foothold at a particular location in the local environment -- in the image space. This novel environment representation captures this critical geometric property of the local terrain while allowing us to exploit the computational benefits of sensing and planning in the image space. We adapt a primitive shapes-based synthetic data generation scheme to create geometrically rich and diverse simulation scenes and extract ground truth semantic information in order to train a steppability model. We then integrate this steppability model into an existing interleaved graph search and trajectory optimization-based footstep planner to demonstrate how this steppability paradigm can inform footstep planning in complex, unknown environments. We analyze the steppability model performance to demonstrate its validity, and we deploy the perception-informed footstep planner both in offline and online settings to experimentally verify planning performance.
arXiv:2501.00184v1 Announce Type: new Abstract: Trajectory prediction aims to estimate an entity's future path using its current position and historical movement data, benefiting fields like autonomous navigation, robotics, and human movement analytics. Deep learning approaches have become key in this area, utilizing large-scale trajectory datasets to model movement patterns, but face challenges in managing complex spatial dependencies and adapting to dynamic environments. To address these challenges, we introduce TrajLearn, a novel model for trajectory prediction that leverages generative modeling of higher-order mobility flows based on hexagonal spatial representation. TrajLearn predicts the next $k$ steps by integrating a customized beam search for exploring multiple potential paths while maintaining spatial continuity. We conducted a rigorous evaluation of TrajLearn, benchmarking it against leading state-of-the-art approaches and meaningful baselines. The results indicate that TrajLearn achieves significant performance gains, with improvements of up to ~40% across multiple real-world trajectory datasets. In addition, we evaluated different prediction horizons (i.e., various values of $k$), conducted resolution sensitivity analysis, and performed ablation studies to assess the impact of key model components. Furthermore, we developed a novel algorithm to generate mixed-resolution maps by hierarchically subdividing hexagonal regions into finer segments within a specified observation area. This approach supports selective detailing, applying finer resolution to areas of interest or high activity (e.g., urban centers) while using coarser resolution for less significant regions (e.g., rural areas), effectively reducing data storage requirements and computational overhead. We promote reproducibility and adaptability by offering complete code, data, and detailed documentation with flexible configuration options for various applications.
arXiv:2501.00368v1 Announce Type: new Abstract: Soft growing robots are novel devices that mimic plant-like growth for navigation in cluttered or dangerous environments. Their ability to adapt to surroundings, combined with advancements in actuation and manufacturing technologies, allows them to perform specialized manipulation tasks. This work presents an approach for design optimization of soft growing robots; specifically, the three-dimensional extension of the optimizer designed for planar manipulators. This tool is intended to be used by engineers and robot enthusiasts before manufacturing their robot: it suggests the optimal size of the robot for solving a specific task. The design process models a multi-objective optimization problem to refine a soft manipulator's kinematic chain. Thanks to the novel Rank Partitioning algorithm integrated into Evolutionary Computation (EC) algorithms, this method achieves high precision in reaching targets and is efficient in resource usage. Results show significantly high performance in solving three-dimensional tasks, whereas comparative experiments indicate that the optimizer features robust output when tested with different EC algorithms, particularly genetic algorithms.
arXiv:2501.01136v1 Announce Type: new Abstract: Multi-agent reinforcement learning has emerged as a powerful framework for enabling agents to learn complex, coordinated behaviors but faces persistent challenges regarding its generalization, scalability and sample efficiency. Recent advancements have sought to alleviate those issues by embedding intrinsic symmetries of the systems in the policy. Yet, most dynamical systems exhibit little to no symmetries to exploit. This paper presents a novel framework for embedding extrinsic symmetries in multi-agent system dynamics that enables the use of symmetry-enhanced methods to address systems with insufficient intrinsic symmetries, expanding the scope of equivariant learning to a wide variety of MARL problems. Central to our framework is the Group Equivariant Graphormer, a group-modular architecture specifically designed for distributed swarming tasks. Extensive experiments on a swarm of symmetry-breaking quadrotors validate the effectiveness of our approach, showcasing its potential for improved generalization and zero-shot scalability. Our method achieves significant reductions in collision rates and enhances task success rates across a diverse range of scenarios and varying swarm sizes.