math-ph
14 postsarXiv:2407.10533v2 Announce Type: replace-cross Abstract: Trotter product formulas constitute a cornerstone quantum Hamiltonian simulation technique. However, the efficient implementation of Hamiltonian evolution of nested commutators remains an under explored area. In this work, we construct optimized product formulas of orders 3 to 6 approximating the exponential of a commutator of two arbitrary operators in terms of the exponentials of the operators involved. The new schemes require a reduced number of exponentials and thus provide more efficient approximations than other previously published alternatives. They can also be used as basic methods in recursive procedures to increase the order of approximation. We expect this research will improve the efficiency of quantum control protocols, as well as quantum algorithms such as the Zassenhaus-based product formula, Magnus operator-based time-dependent simulation, and product formula schemes with modified potentials.
arXiv:2404.10863v2 Announce Type: replace-cross Abstract: Hypo-elastoplasticity is a framework suitable for modeling the mechanics of many hard materials that have small elastic deformation and large plastic deformation. In most laboratory tests for these materials the Cauchy stress is in quasi-static equilibrium. Rycroft et al. discovered a mathematical correspondence between this physical system and the incompressible Navier-Stokes equations, and developed a projection method similar to Chorin's projection method (1968) for incompressible Newtonian fluids. Here, we improve the original projection method to simulate quasi-static hypo-elastoplasticity, by making three improvements. First, drawing inspiration from the second-order projection method for incompressible Newtonian fluids, we formulate a second-order in time numerical scheme for quasi-static hypo-elastoplasticity. Second, we implement a finite element method for solving the elliptic equations in the projection step, which provides both numerical benefits and flexibility. Third, we develop an adaptive global time-stepping scheme, which can compute accurate solutions in fewer timesteps. Our numerical tests use an example physical model of a bulk metallic glass based on the shear transformation zone theory, but the numerical methods can be applied to any elastoplastic material.
arXiv:2311.07065v2 Announce Type: replace Abstract: We analyze geometric aspects of the gradient descent algorithm in Deep Learning (DL), and give a detailed discussion of the circumstance that in underparametrized DL networks, zero loss minimization can generically not be attained. As a consequence, we conclude that the distribution of training inputs must necessarily be non-generic in order to produce zero loss minimizers, both for the method constructed in [Chen-Munoz Ewald 2023, 2024], or for gradient descent [Chen 2025] (which assume clustering of training data).
arXiv:2501.10672v1 Announce Type: cross Abstract: We present a "homotopification" of fundamental concepts from information theory. Using homotopy type theory, we define homotopy types that behave analogously to probability spaces, random variables, and the exponentials of Shannon entropy and relative entropy. The original analytic theories emerge through homotopy cardinality, which maps homotopy types to real numbers and generalizes the cardinality of sets.
arXiv:2501.06427v1 Announce Type: cross Abstract: It is a folklore belief in the theory of spin glasses and disordered systems that out-of-equilibrium dynamics fail to find stable local optima exhibiting e.g. local strict convexity on physical time-scales. In the context of the Sherrington--Kirkpatrick spin glass, Behrens-Arpino-Kivva-Zdeborov\'a and Minzer-Sah-Sawhney have recently conjectured that this obstruction may be inherent to all efficient algorithms, despite the existence of exponentially many such optima throughout the landscape. We prove this search problem exhibits strong low degree hardness for polynomial algorithms of degree $D\leq o(N)$: any such algorithm has probability $o(1)$ to output a stable local optimum. To the best of our knowledge, this is the first result to prove that even constant-degree polynomials have probability $o(1)$ to solve a random search problem without planted structure. To prove this, we develop a general-purpose enhancement of the ensemble overlap gap property, and as a byproduct improve previous results on spin glass optimization, maximum independent set, random $k$-SAT, and the Ising perceptron to strong low degree hardness. Finally for spherical spin glasses with no external field, we prove that Langevin dynamics does not find stable local optima within dimension-free time.
arXiv:2410.00355v2 Announce Type: replace-cross Abstract: Finding eigenvalue distributions for a number of sparse random matrix ensembles can be reduced to solving nonlinear integral equations of the Hammerstein type. While a systematic mathematical theory of such equations exists, it has not been previously applied to sparse matrix problems. We close this gap in the literature by showing how one can employ numerical solutions of Hammerstein equations to accurately recover the spectra of adjacency matrices and Laplacians of random graphs. While our treatment focuses on random graphs for concreteness, the methodology has broad applications to more general sparse random matrices.
arXiv:2501.03363v1 Announce Type: new Abstract: We consider the optimisation problem of adding $k$ links to a given network, such that the resulting effective graph resistance is as small as possible. The problem was recently proven to be NP-hard, such that optimal solutions obtained with brute-force methods require exponentially many computation steps and thus are infeasible for any graph of realistic size. Therefore, it is common in such cases to use a simple greedy algorithm to obtain an approximation of the optimal solution. It is known that if the considered problem is submodular, the quality of the greedy solution can be guaranteed. However, it is known that the optimisation problem we are facing, is not submodular. For such cases one can use the notion of generalized submodularity, which is captured by the submodularity ratio $\gamma$. A performance bound, which is a function of $\gamma$, also exists in case of generalized submodularity. In this paper we give an example of a family of graphs where the submodularity ratio approaches zero, implying that the solution quality of the greedy algorithm cannot be guaranteed. Furthermore, we show that the greedy algorithm does not always yield the optimal solution and demonstrate that even for a small graph with 10 nodes, the ratio between the optimal and the greedy solution can be as small as 0.878.
arXiv:2403.02237v2 Announce Type: replace-cross Abstract: We present our investigation of the study of two variable hypergeometric series, namely Appell $F_{1}$ and $F_{3}$ series, and obtain a comprehensive list of its analytic continuations enough to cover the whole real $(x,y)$ plane, except on their singular loci. We also derive analytic continuations of their 3-variable generalization, the Lauricella $F_{D}^{(3)}$ series and the Lauricella-Saran $F_{S}^{(3)}$ series, leveraging the analytic continuations of $F_{1}$ and $F_{3}$, which ensures that the whole real $(x,y,z)$ space is covered, except on the singular loci of these functions. While these studies are motivated by the frequent occurrence of these multivariable hypergeometric functions in Feynman integral evaluation, they can also be used whenever they appear in other branches of mathematical physics. To facilitate their practical use, we provide four packages: $\texttt{AppellF1.wl}$, $\texttt{AppellF3.wl}$, $\texttt{LauricellaFD.wl}$, and $\texttt{LauricellaSaranFS.wl}$ in $\textit{MATHEMATICA}$. These packages are applicable for generic as well as non-generic values of parameters, keeping in mind their utilities in the evaluation of the Feynman integrals. We explicitly present various physical applications of these packages in the context of Feynman integral evaluation and compare the results using other packages such as $\texttt{FIESTA}$. Upon applying the appropriate conventions for numerical evaluation, we find that the results obtained from our packages are consistent. Various $\textit{Mathematica}$ notebooks demonstrating different numerical results are also provided along with this paper.
arXiv:2501.01383v1 Announce Type: cross Abstract: A classic problem in data analysis is studying the systems of subsets defined by either a similarity or a dissimilarity function on $X$ which is either observed directly or derived from a data set. For an electrical network there are two functions on the set of the nodes defined by the resistance matrix and the response matrix either of which defines the network completely. We argue that these functions should be viewed as a similarity and a dissimilarity function on the set of the nodes moreover they are related via the covariance mapping also known as the Farris transform or the Gromov product. We will explore the properties of electrical networks from this point of view. It has been known for a while that the resistance matrix defines a metric on the nodes of the electrical networks. Moreover for a circular electrical network this metric obeys the Kalmanson property as it was shown recently. We will call such a metric an electrical Kalmanson metric. The main results of this paper is a complete description of the electrical Kalmanson metrics in the set of all Kalmanson metrics in terms of the geometry of the positive Isotropic Grassmannian whose connection to the theory of electrical networks was discovered earlier. One important area of applications where Kalmanson metrics are actively used is the theory of phylogenetic networks which are a generalization of phylogenetic trees. Our results allow us to use in phylogenetics the powerful methods of reconstruction of the minimal graphs of electrical networks and possibly open the door into data analysis for the methods of the theory of cluster algebras.
arXiv:2412.18263v1 Announce Type: new Abstract: Irreducible Cartesian tensors (ICTs) play a crucial role in the design of equivariant graph neural networks, as well as in theoretical chemistry and chemical physics. Meanwhile, the design space of available linear operations on tensors that preserve symmetry presents a significant challenge. The ICT decomposition and a basis of this equivariant space are difficult to obtain for high-order tensors. After decades of research, we recently achieve an explicit ICT decomposition for $n=5$ \citep{bonvicini2024irreducible} with factorial time/space complexity. This work, for the first time, obtains decomposition matrices for ICTs up to rank $n=9$ with reduced and affordable complexity, by constructing what we call path matrices. The path matrices are obtained via performing chain-like contraction with Clebsch-Gordan matrices following the parentage scheme. We prove and leverage that the concatenation of path matrices is an orthonormal change-of-basis matrix between the Cartesian tensor product space and the spherical direct sum spaces. Furthermore, we identify a complete orthogonal basis for the equivariant space, rather than a spanning set \citep{pearce2023brauer}, through this path matrices technique. We further extend our result to the arbitrary tensor product and direct sum spaces, enabling free design between different spaces while keeping symmetry. The Python code is available in the appendix where the $n=6,\dots,9$ ICT decomposition matrices are obtained in <0.1s, 0.5s, 1s, 3s, 11s, and 4m32s, respectively.
arXiv:2407.12527v2 Announce Type: replace-cross Abstract: The Discrete Ordinates Method (DOM) is the most widely used velocity discretiza-tion method for simulating the radiative transport equation. However, the ray effect is a long-standing drawback of DOM. In benchmark tests that exhibit the ray effect, we observe low regularity in the velocity variable of the solution. To address this issue, we propose a Random Ordinate Method (ROM) to mitigate the ray effect. Compared to other strategies proposed in the literature for mitigating the ray effect, ROM offers several advantages: 1) the computational cost is comparable to that of DOM; 2) it is simple and requires minimal changes to existing DOM-based code; 3) it is easily parallelizable and independent of the problem setup. A formal analysis is presented for the convergence orders of the error and bias. Numerical tests demonstrate the reduction in computational cost compared toDOM, as well as its effectiveness in mitigating the ray effect.
arXiv:2304.03182v2 Announce Type: replace-cross Abstract: Sampling from the $q$-state ferromagnetic Potts model is a fundamental question in statistical physics, probability theory, and theoretical computer science. On general graphs, this problem may be computationally hard, and this hardness holds at arbitrarily low temperatures. At the same time, in recent years, there has been significant progress showing the existence of low-temperature sampling algorithms in various specific families of graphs. Our aim in this paper is to understand the minimal structural properties of general graphs that enable polynomial-time sampling from the $q$-state ferromagnetic Potts model at low temperatures. We study this problem from the perspective of random-cluster dynamics. These are non-local Markov chains that have long been believed to converge rapidly to equilibrium at low temperatures in many graphs. However, the hardness of the sampling problem likely indicates that this is not even the case for all bounded degree graphs. Our results demonstrate that a key graph property behind fast or slow convergence time for these dynamics is whether the independent edge-percolation on the graph admits a strongly supercritical phase. By this, we mean that at large $p<1$, it has a large linear-sized component, and the graph complement of that component is comprised of only small components. Specifically, we prove that such a condition implies fast mixing of the random-cluster Glauber and Swendsen--Wang dynamics on two general families of bounded-degree graphs: (a) graphs of at most stretched-exponential volume growth and (b) locally treelike graphs. In the other direction, we show that, even among graphs in those families, these Markov chains can converge exponentially slowly at arbitrarily low temperatures if the edge-percolation condition does not hold.
arXiv:2404.18247v3 Announce Type: replace-cross Abstract: We study the integrability of two-dimensional theories that are obtained by a dimensional reduction of certain four-dimensional gravitational theories describing the coupling of Maxwell fields and neutral scalar fields to gravity in the presence of a potential for the neutral scalar fields. For a certain solution subspace, we demonstrate partial integrability by showing that a subset of the equations of motion in two dimensions are the compatibility conditions for a linear system. Subsequently, we study the integrability of these two-dimensional models from a complementary one-dimensional point of view, framed in terms of Liouville integrability. In this endeavour, we employ various machine learning techniques to systematise our search for numerical Lax pair matrices for these models, as well as conserved currents expressed as functions of phase space variables.
arXiv:2403.10990v3 Announce Type: replace-cross Abstract: Quantum noise plays a pivotal role in understanding quantum transport phenomena, including current correlations and wave-particle duality. A recent focus in this domain is $\Delta_T$ noise, which arises due to a finite temperature difference in the absence of charge current at zero voltage bias. This paper investigates $\Delta_T$ noise in mesoscopic hybrid junctions with insulators, where the average charge current is zero at zero voltage bias, through the measurement of quantum shot noise, i.e., $\Delta_T$ noise. Notably, we find that the $\Delta_T$ noise in metal-insulator-superconductor junctions is significantly larger than in metal-insulator-metal junctions. Furthermore, our results reveal that $\Delta_T$ noise initially increases with barrier strength, peaks, and then decreases, while it shows a steady increase with temperature bias, highlighting the nuanced interplay between barrier characteristics and thermal gradients.