math.FA

2 posts

arXiv:2410.08361v2 Announce Type: replace-cross Abstract: In this paper, we study a Markov chain-based stochastic gradient algorithm in general Hilbert spaces, aiming to approximate the optimal solution of a quadratic loss function. We establish probabilistic upper bounds on its convergence. We further extend these results to an online regularized learning algorithm in reproducing kernel Hilbert spaces, where the samples are drawn along a Markov chain trajectory hence the samples are of the non i.i.d. type.

Priyanka Roy, Susanne Saminger-Platz1/3/2025

arXiv:2412.18468v1 Announce Type: cross Abstract: Matrix concentration inequalities and their recently discovered sharp counterparts provide powerful tools to bound the spectrum of random matrices whose entries are linear functions of independent random variables. However, in many applications in theoretical computer science and in other areas one encounters more general random matrix models, called matrix chaoses, whose entries are polynomials of independent random variables. Such models have often been studied on a case-by-case basis using ad-hoc methods that can yield suboptimal dimensional factors. In this paper we provide general matrix concentration inequalities for matrix chaoses, which enable the treatment of such models in a systematic manner. These inequalities are expressed in terms of flattenings of the coefficients of the matrix chaos. We further identify a special family of matrix chaoses of combinatorial type for which the flattening parameters can be computed mechanically by a simple rule. This allows us to provide a unified treatment of and improved bounds for matrix chaoses that arise in a variety of applications, including graph matrices, Khatri-Rao matrices, and matrices that arise in average case analysis of the sum-of-squares hierarchy.

Afonso S. Bandeira, Kevin Lucca, Petar Nizi\'c-Nikolac, Ramon van Handel12/25/2024