physics.app-ph
3 postsarXiv:2412.16803v1 Announce Type: new Abstract: Electroadhesion is an electrically controllable switchable adhesive commonly used in soft robots and haptic user interfaces. It can form strong bonds to a wide variety of surfaces at low power consumption. However, electroadhesive clutches in the literature engage to and release from substrates several orders of magnitude slower than a traditional electrostatic model would predict, limiting their usefulness in high-bandwidth applications. We develop a novel electromechanical model for electroadhesion, factoring in polarization dynamics and contact mechanics between the dielectric and substrate. We show in simulation and experimentally how different design parameters affect the engagement and release times of electroadhesive clutches to metallic substrates. In particular, we find that higher drive frequencies and narrower substrate aspect ratios enable significantly faster dynamics. We demonstrate designs with engagement times under 15 us and release times as low as 875 us, which are 10x and 17.1x faster, respectively, than the best times found in prior literature.
arXiv:2412.16099v1 Announce Type: cross Abstract: Tantalum (Ta) has recently received considerable attention in manufacturing robust superconducting quantum circuits. Ta offers low microwave loss, high kinetic inductance compared to aluminium (Al) and niobium (Nb), and good compatibility with complementary metal-oxide-semiconductor (CMOS) technology, which is essential for quantum computing applications. Here, we demonstrate the fabrication engineering of thickness-dependent high quality factor (high-Q_i) Ta superconducting microwave coplanar waveguide resonators. All films are deposited on high-resistivity silicon substrates at room temperature without additional substrate heating. Before Ta deposition, a niobium (Nb) seed layer is used to ensure a body-centred cubic lattice ({\alpha}-Ta) formation. We further engineer the kinetic inductance (L_K) resonators by varying Ta film thicknesses. High L_K is a key advantage for applications because it facilitates the realisation of high-impedance, compact quantum circuits with enhanced coupling to qubits. The maximum internal quality factor Q_i of ~ 3.6 * 10^6 is achieved at the high power regime for 100 nm Ta, while the highest kinetic inductance is obtained to be 0.6 pH/sq for the thinnest film, which is 40 nm. This combination of high Q_i and high L_K highlights the potential of Ta microwave circuits for high-fidelity operations of compact quantum circuits.
arXiv:2403.10990v3 Announce Type: replace-cross Abstract: Quantum noise plays a pivotal role in understanding quantum transport phenomena, including current correlations and wave-particle duality. A recent focus in this domain is $\Delta_T$ noise, which arises due to a finite temperature difference in the absence of charge current at zero voltage bias. This paper investigates $\Delta_T$ noise in mesoscopic hybrid junctions with insulators, where the average charge current is zero at zero voltage bias, through the measurement of quantum shot noise, i.e., $\Delta_T$ noise. Notably, we find that the $\Delta_T$ noise in metal-insulator-superconductor junctions is significantly larger than in metal-insulator-metal junctions. Furthermore, our results reveal that $\Delta_T$ noise initially increases with barrier strength, peaks, and then decreases, while it shows a steady increase with temperature bias, highlighting the nuanced interplay between barrier characteristics and thermal gradients.