hep-ph

5 posts

arXiv:2403.02237v2 Announce Type: replace-cross Abstract: We present our investigation of the study of two variable hypergeometric series, namely Appell $F_{1}$ and $F_{3}$ series, and obtain a comprehensive list of its analytic continuations enough to cover the whole real $(x,y)$ plane, except on their singular loci. We also derive analytic continuations of their 3-variable generalization, the Lauricella $F_{D}^{(3)}$ series and the Lauricella-Saran $F_{S}^{(3)}$ series, leveraging the analytic continuations of $F_{1}$ and $F_{3}$, which ensures that the whole real $(x,y,z)$ space is covered, except on the singular loci of these functions. While these studies are motivated by the frequent occurrence of these multivariable hypergeometric functions in Feynman integral evaluation, they can also be used whenever they appear in other branches of mathematical physics. To facilitate their practical use, we provide four packages: $\texttt{AppellF1.wl}$, $\texttt{AppellF3.wl}$, $\texttt{LauricellaFD.wl}$, and $\texttt{LauricellaSaranFS.wl}$ in $\textit{MATHEMATICA}$. These packages are applicable for generic as well as non-generic values of parameters, keeping in mind their utilities in the evaluation of the Feynman integrals. We explicitly present various physical applications of these packages in the context of Feynman integral evaluation and compare the results using other packages such as $\texttt{FIESTA}$. Upon applying the appropriate conventions for numerical evaluation, we find that the results obtained from our packages are consistent. Various $\textit{Mathematica}$ notebooks demonstrating different numerical results are also provided along with this paper.

Souvik Bera, Tanay Pathak1/3/2025

arXiv:2412.17104v1 Announce Type: new Abstract: We present a Python package together with a practical guide for the implementation of a lightweight diversity-enhanced genetic algorithm (GA) approach for the exploration of multi-dimensional parameter spaces. Searching a parameter space for regions with desirable properties, e.g. compatibility with experimental data, poses a type of optimization problem wherein the focus lies on pinpointing all "good enough" solutions, rather than a single "best solution". Our approach dramatically outperforms random scans and other GA-based implementations in this aspect. We validate the effectiveness of our approach by applying it to a particle physics problem, showcasing its ability to identify promising parameter points in isolated, viable regions meeting experimental constraints. The companion Python package is applicable to optimization problems beyond those considered in this work, including scanning over discrete parameters (categories). A detailed guide for its usage is provided.

Jonas Wess\'en, Eliel Camargo-Molina12/24/2024

arXiv:2412.16303v1 Announce Type: cross Abstract: Neutrino-nucleus scattering cross sections are critical theoretical inputs for long-baseline neutrino oscillation experiments. However, robust modeling of these cross sections remains challenging. For a simple but physically motivated toy model of the DUNE experiment, we demonstrate that an accurate neural-network model of the cross section -- leveraging Standard Model symmetries -- can be learned from near-detector data. We then perform a neutrino oscillation analysis with simulated far-detector events, finding that the modeled cross section achieves results consistent with what could be obtained if the true cross section were known exactly. This proof-of-principle study highlights the potential of future neutrino near-detector datasets and data-driven cross-section models.

Daniel C. Hackett, Joshua Isaacson, Shirley Weishi Li, Karla Tame-Narvaez, Michael L. Wagman12/24/2024

arXiv:2411.00446v2 Announce Type: replace-cross Abstract: We show that the Lorentz-Equivariant Geometric Algebra Transformer (L-GATr) yields state-of-the-art performance for a wide range of machine learning tasks at the Large Hadron Collider. L-GATr represents data in a geometric algebra over space-time and is equivariant under Lorentz transformations. The underlying architecture is a versatile and scalable transformer, which is able to break symmetries if needed. We demonstrate the power of L-GATr for amplitude regression and jet classification, and then benchmark it as the first Lorentz-equivariant generative network. For all three LHC tasks, we find significant improvements over previous architectures.

Johann Brehmer, V\'ictor Bres\'o, Pim de Haan, Tilman Plehn, Huilin Qu, Jonas Spinner, Jesse Thaler12/24/2024

arXiv:2412.00198v1 Announce Type: cross Abstract: Weak supervision combines the advantages of training on real data with the ability to exploit signal properties. However, training a neural network using weak supervision often requires an excessive amount of signal data, which severely limits its practical applicability. In this study, we propose addressing this limitation through data augmentation, increasing the training data's size and diversity. Specifically, we focus on physics-inspired data augmentation methods, such as $p_{\text{T}}$ smearing and jet rotation. Our results demonstrate that data augmentation can significantly enhance the performance of weak supervision, enabling neural networks to learn efficiently from substantially less data.

Zong-En Chen, Cheng-Wei Chiang, Feng-Yang Hsieh12/23/2024