cond-mat.supr-con
2 postsarXiv:2412.17926v1 Announce Type: new Abstract: The extensive development of the field of spiking neural networks has led to many areas of research that have a direct impact on people's lives. As the most bio-similar of all neural networks, spiking neural networks not only allow the solution of recognition and clustering problems (including dynamics), but also contribute to the growing knowledge of the human nervous system. Our analysis has shown that the hardware implementation is of great importance, since the specifics of the physical processes in the network cells affect their ability to simulate the neural activity of living neural tissue, the efficiency of certain stages of information processing, storage and transmission. This survey reviews existing hardware neuromorphic implementations of bio-inspired spiking networks in the "semiconductor", "superconductor" and "optical" domains. Special attention is given to the possibility of effective "hybrids" of different approaches
arXiv:2412.16099v1 Announce Type: cross Abstract: Tantalum (Ta) has recently received considerable attention in manufacturing robust superconducting quantum circuits. Ta offers low microwave loss, high kinetic inductance compared to aluminium (Al) and niobium (Nb), and good compatibility with complementary metal-oxide-semiconductor (CMOS) technology, which is essential for quantum computing applications. Here, we demonstrate the fabrication engineering of thickness-dependent high quality factor (high-Q_i) Ta superconducting microwave coplanar waveguide resonators. All films are deposited on high-resistivity silicon substrates at room temperature without additional substrate heating. Before Ta deposition, a niobium (Nb) seed layer is used to ensure a body-centred cubic lattice ({\alpha}-Ta) formation. We further engineer the kinetic inductance (L_K) resonators by varying Ta film thicknesses. High L_K is a key advantage for applications because it facilitates the realisation of high-impedance, compact quantum circuits with enhanced coupling to qubits. The maximum internal quality factor Q_i of ~ 3.6 * 10^6 is achieved at the high power regime for 100 nm Ta, while the highest kinetic inductance is obtained to be 0.6 pH/sq for the thinnest film, which is 40 nm. This combination of high Q_i and high L_K highlights the potential of Ta microwave circuits for high-fidelity operations of compact quantum circuits.