cs.DL
9 postsarXiv:2501.00939v1 Announce Type: new Abstract: The Web has drastically simplified our access to knowledge and learning, and fact-checking online resources has become a part of our daily routine. Studying online knowledge consumption is thus critical for understanding human behavior and informing the design of future platforms. In this Chapter, we approach this subject by describing the navigation patterns of the readers of Wikipedia, the world's largest platform for open knowledge. We provide a comprehensive overview of what is known about the three steps that characterize navigation on Wikipedia: (1) how readers reach the platform, (2) how readers navigate the platform, and (3) how readers leave the platform. Finally, we discuss open problems and opportunities for future research in this field.
arXiv:2501.00564v1 Announce Type: cross Abstract: Thermoelectric materials provide a sustainable way to convert waste heat into electricity. However, data-driven discovery and optimization of these materials are challenging because of a lack of a reliable database. Here we developed a comprehensive database of 7,123 thermoelectric compounds, containing key information such as chemical composition, structural detail, seebeck coefficient, electrical and thermal conductivity, power factor, and figure of merit (ZT). We used the GPTArticleExtractor workflow, powered by large language models (LLM), to extract and curate data automatically from the scientific literature published in Elsevier journals. This process enabled the creation of a structured database that addresses the challenges of manual data collection. The open access database could stimulate data-driven research and advance thermoelectric material analysis and discovery.
arXiv:2501.00367v1 Announce Type: new Abstract: This paper investigates the performance of several representative large models in the tasks of literature recommendation and explores potential biases in research exposure. The results indicate that not only LLMs' overall recommendation accuracy remains limited but also the models tend to recommend literature with greater citation counts, later publication date, and larger author teams. Yet, in scholar recommendation tasks, there is no evidence that LLMs disproportionately recommend male, white, or developed-country authors, contrasting with patterns of known human biases.
arXiv:2501.00473v1 Announce Type: new Abstract: Despite enormous efforts devoted to understand the characteristics and impacts of retracted papers, little is known about the mechanisms underlying the dynamics of their harm and the dynamics of its propagation. Here, we propose a citation-based framework to quantify the harm caused by retracted papers, aiming to uncover why their harm persists and spreads so widely. We uncover an ``attention escape'' mechanism, wherein retracted papers postpone significant harm, more prominently affect indirectly citing papers, and inflict greater harm on citations in journals with an impact factor less than $10$. This mechanism allows retracted papers to inflict harm outside the attention of authors and publishers, thereby evading their intervention. This study deepens understanding of the harm caused by retracted papers, emphasizes the need to activate and enhance the attention of authors and publishers, and offers new insights and a foundation for strategies to mitigate their harm and prevent its spread.
arXiv:2412.18063v1 Announce Type: new Abstract: This paper introduces LMRPA, a novel Large Model-Driven Robotic Process Automation (RPA) model designed to greatly improve the efficiency and speed of Optical Character Recognition (OCR) tasks. Traditional RPA platforms often suffer from performance bottlenecks when handling high-volume repetitive processes like OCR, leading to a less efficient and more time-consuming process. LMRPA allows the integration of Large Language Models (LLMs) to improve the accuracy and readability of extracted text, overcoming the challenges posed by ambiguous characters and complex text structures.Extensive benchmarks were conducted comparing LMRPA to leading RPA platforms, including UiPath and Automation Anywhere, using OCR engines like Tesseract and DocTR. The results are that LMRPA achieves superior performance, cutting the processing times by up to 52\%. For instance, in Batch 2 of the Tesseract OCR task, LMRPA completed the process in 9.8 seconds, where UiPath finished in 18.1 seconds and Automation Anywhere finished in 18.7 seconds. Similar improvements were observed with DocTR, where LMRPA outperformed other automation tools conducting the same process by completing tasks in 12.7 seconds, while competitors took over 20 seconds to do the same. These findings highlight the potential of LMRPA to revolutionize OCR-driven automation processes, offering a more efficient and effective alternative solution to the existing state-of-the-art RPA models.
arXiv:2412.18100v1 Announce Type: new Abstract: The rapid growth of scientific techniques and knowledge is reflected in the exponential increase in new patents filed annually. While these patents drive innovation, they also present significant burden for researchers and engineers, especially newcomers. To avoid the tedious work of navigating a vast and complex landscape to identify trends and breakthroughs, researchers urgently need efficient tools to summarize, evaluate, and contextualize patents, revealing their innovative contributions and underlying scientific principles.To address this need, we present EvoPat, a multi-LLM-based patent agent designed to assist users in analyzing patents through Retrieval-Augmented Generation (RAG) and advanced search strategies. EvoPat leverages multiple Large Language Models (LLMs), each performing specialized roles such as planning, identifying innovations, and conducting comparative evaluations. The system integrates data from local databases, including patents, literature, product catalogous, and company repositories, and online searches to provide up-to-date insights. The ability to collect information not included in original database automatically is also implemented. Through extensive testing in the natural language processing (NLP) domain, we demonstrate that EvoPat outperforms GPT-4 in tasks such as patent summarization, comparative analysis, and technical evaluation. EvoPat represents a significant step toward creating AI-powered tools that empower researchers and engineers to efficiently navigate the complexities of the patent landscape.
arXiv:2412.15249v1 Announce Type: new Abstract: Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially due to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract. We decompose the task into two components: 1. Retrieving related works given a query abstract, and 2. Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components. For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods, while providing insights into the LLM's decision-making process. In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review. To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations. We release this evaluation protocol to promote additional research and development in this regard. Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning. Further, we demonstrate that our planning-based approach achieves higher-quality reviews by minimizing hallucinated references in the generated review by 18-26% compared to existing simpler LLM-based generation methods.
arXiv:2412.15831v1 Announce Type: new Abstract: Questions within surveys, called survey items, are used in the social sciences to study latent concepts, such as the factors influencing life satisfaction. Instead of using explicit citations, researchers paraphrase the content of the survey items they use in-text. However, this makes it challenging to find survey items of interest when comparing related work. Automatically parsing and linking these implicit mentions to survey items in a knowledge base can provide more fine-grained references. We model this task, called Survey Item Linking (SIL), in two stages: mention detection and entity disambiguation. Due to an imprecise definition of the task, existing datasets used for evaluating the performance for SIL are too small and of low-quality. We argue that latent concepts and survey item mentions should be differentiated. To this end, we create a high-quality and richly annotated dataset consisting of 20,454 English and German sentences. By benchmarking deep learning systems for each of the two stages independently and sequentially, we demonstrate that the task is feasible, but observe that errors propagate from the first stage, leading to a lower overall task performance. Moreover, mentions that require the context of multiple sentences are more challenging to identify for models in the first stage. Modeling the entire context of a document and combining the two stages into an end-to-end system could mitigate these problems in future work, and errors could additionally be reduced by collecting more diverse data and by improving the quality of the knowledge base. The data and code are available at https://github.com/e-tornike/SIL .
arXiv:2407.13993v3 Announce Type: replace Abstract: This paper introduces LLAssist, an open-source tool designed to streamline literature reviews in academic research. In an era of exponential growth in scientific publications, researchers face mounting challenges in efficiently processing vast volumes of literature. LLAssist addresses this issue by leveraging Large Language Models (LLMs) and Natural Language Processing (NLP) techniques to automate key aspects of the review process. Specifically, it extracts important information from research articles and evaluates their relevance to user-defined research questions. The goal of LLAssist is to significantly reduce the time and effort required for comprehensive literature reviews, allowing researchers to focus more on analyzing and synthesizing information rather than on initial screening tasks. By automating parts of the literature review workflow, LLAssist aims to help researchers manage the growing volume of academic publications more efficiently.