cs.MM

64 posts

arXiv:2501.06215v1 Announce Type: new Abstract: This paper is the first-place solution for ICASSP MEIJU@2025 Track I, which focuses on low-resource multimodal emotion and intention recognition. How to effectively utilize a large amount of unlabeled data, while ensuring the mutual promotion of different difficulty levels tasks in the interaction stage, these two points become the key to the competition. In this paper, pseudo-label labeling is carried out on the model trained with labeled data, and samples with high confidence and their labels are selected to alleviate the problem of low resources. At the same time, the characteristic of easy represented ability of intention recognition found in the experiment is used to make mutually promote with emotion recognition under different attention heads, and higher performance of intention recognition is achieved through fusion. Finally, under the refined processing data, we achieve the score of 0.5532 in the Test set, and win the championship of the track.

Xinger Li, Zhiqiang Zhong, Bo Huang, Yang Yang1/14/2025

arXiv:2501.07245v1 Announce Type: new Abstract: This paper is devoted to the detection of objects on a road, performed with a combination of two methods based on both the use of depth information and video analysis of data from a stereo camera. Since neither the time of the appearance of an object on the road, nor its size and shape is known in advance, ML/DL-based approaches are not applicable. The task becomes more complicated due to variations in artificial illumination, inhomogeneous road surface texture, and unknown character and features of the object. To solve this problem we developed the depth and image fusion method that complements a search of small contrast objects by RGB-based method, and obstacle detection by stereo image-based approach with SLIC superpixel segmentation. We conducted experiments with static and low speed obstacles in an underground parking lot and demonstrated the successful work of the developed technique for detecting and even tracking small objects, which can be parking infrastructure objects, things left on the road, wheels, dropped boxes, etc.

Oleg Perezyabov, Mikhail Gavrilenkov, Ilya Afanasyev1/14/2025

arXiv:2411.11222v2 Announce Type: replace Abstract: We study the connection between audio-visual observations and the underlying physics of a mundane yet intriguing everyday activity: pouring liquids. Given only the sound of liquid pouring into a container, our objective is to automatically infer physical properties such as the liquid level, the shape and size of the container, the pouring rate and the time to fill. To this end, we: (i) show in theory that these properties can be determined from the fundamental frequency (pitch); (ii) train a pitch detection model with supervision from simulated data and visual data with a physics-inspired objective; (iii) introduce a new large dataset of real pouring videos for a systematic study; (iv) show that the trained model can indeed infer these physical properties for real data; and finally, (v) we demonstrate strong generalization to various container shapes, other datasets, and in-the-wild YouTube videos. Our work presents a keen understanding of a narrow yet rich problem at the intersection of acoustics, physics, and learning. It opens up applications to enhance multisensory perception in robotic pouring.

Piyush Bagad, Makarand Tapaswi, Cees G. M. Snoek, Andrew Zisserman1/14/2025

arXiv:2501.07246v1 Announce Type: new Abstract: Large Audio-Language Models (LALMs) have demonstrated remarkable performance in tasks involving audio perception and understanding, such as speech recognition and audio captioning. However, their reasoning capabilities - critical for solving complex real-world problems - remain underexplored. In this work, we conduct the first exploration into integrating Chain-of-Thought (CoT) reasoning into LALMs to enhance their reasoning ability across auditory modalities. We evaluate representative CoT methods, analyzing their performance in both information extraction and reasoning tasks across sound, music, and speech domains. Our findings reveal that CoT methods significantly improve performance on easy and medium tasks but encounter challenges with hard tasks, where reasoning chains can confuse the model rather than improve accuracy. Additionally, we identify a positive correlation between reasoning path length and accuracy, demonstrating the potential of scaling inference for advanced instruction-following and reasoning. This study not only highlights the promise of CoT in enhancing LALM reasoning capabilities but also identifies key limitations and provides actionable directions for future research.

Ziyang Ma, Zhuo Chen, Yuping Wang, Eng Siong Chng, Xie Chen1/14/2025

arXiv:2501.07110v1 Announce Type: new Abstract: Multimodal information (e.g., visual, acoustic, and textual) has been widely used to enhance representation learning for micro-video recommendation. For integrating multimodal information into a joint representation of micro-video, multimodal fusion plays a vital role in the existing micro-video recommendation approaches. However, the static multimodal fusion used in previous studies is insufficient to model the various relationships among multimodal information of different micro-videos. In this paper, we develop a novel meta-learning-based multimodal fusion framework called Meta Multimodal Fusion (MetaMMF), which dynamically assigns parameters to the multimodal fusion function for each micro-video during its representation learning. Specifically, MetaMMF regards the multimodal fusion of each micro-video as an independent task. Based on the meta information extracted from the multimodal features of the input task, MetaMMF parameterizes a neural network as the item-specific fusion function via a meta learner. We perform extensive experiments on three benchmark datasets, demonstrating the significant improvements over several state-of-the-art multimodal recommendation models, like MMGCN, LATTICE, and InvRL. Furthermore, we lighten our model by adopting canonical polyadic decomposition to improve the training efficiency, and validate its effectiveness through experimental results. Codes are available at https://github.com/hanliu95/MetaMMF.

Han Liu, Yinwei Wei, Fan Liu, Wenjie Wang, Liqiang Nie, Tat-Seng Chua1/14/2025

arXiv:2501.06488v1 Announce Type: new Abstract: Neural View Synthesis (NVS), such as NeRF and 3D Gaussian Splatting, effectively creates photorealistic scenes from sparse viewpoints, typically evaluated by quality assessment methods like PSNR, SSIM, and LPIPS. However, these full-reference methods, which compare synthesized views to reference views, may not fully capture the perceptual quality of neurally synthesized scenes (NSS), particularly due to the limited availability of dense reference views. Furthermore, the challenges in acquiring human perceptual labels hinder the creation of extensive labeled datasets, risking model overfitting and reduced generalizability. To address these issues, we propose NVS-SQA, a NSS quality assessment method to learn no-reference quality representations through self-supervision without reliance on human labels. Traditional self-supervised learning predominantly relies on the "same instance, similar representation" assumption and extensive datasets. However, given that these conditions do not apply in NSS quality assessment, we employ heuristic cues and quality scores as learning objectives, along with a specialized contrastive pair preparation process to improve the effectiveness and efficiency of learning. The results show that NVS-SQA outperforms 17 no-reference methods by a large margin (i.e., on average 109.5% in SRCC, 98.6% in PLCC, and 91.5% in KRCC over the second best) and even exceeds 16 full-reference methods across all evaluation metrics (i.e., 22.9% in SRCC, 19.1% in PLCC, and 18.6% in KRCC over the second best).

Qiang Qu, Yiran Shen, Xiaoming Chen, Yuk Ying Chung, Weidong Cai, Tongliang Liu1/14/2025

arXiv:2406.00323v2 Announce Type: replace Abstract: Multimedia recommender systems focus on utilizing behavioral information and content information to model user preferences. Typically, it employs pre-trained feature encoders to extract content features, then fuses them with behavioral features. However, pre-trained feature encoders often extract features from the entire content simultaneously, including excessive preference-irrelevant details. We speculate that it may result in the extracted features not containing sufficient features to accurately reflect user preferences. To verify our hypothesis, we introduce an attribution analysis method for visually and intuitively analyzing the content features. The results indicate that certain products' content features exhibit the issues of information drift}and information omission,reducing the expressive ability of features. Building upon this finding, we propose an effective and efficient general Behavior-driven Feature Adapter (BeFA) to tackle these issues. This adapter reconstructs the content feature with the guidance of behavioral information, enabling content features accurately reflecting user preferences. Extensive experiments demonstrate the effectiveness of the adapter across all multimedia recommendation methods. Our code is made publicly available on https://github.com/fqldom/BeFA.

Qile Fan, Penghang Yu, Zhiyi Tan, Bing-Kun Bao, Guanming Lu1/14/2025

arXiv:2308.12636v4 Announce Type: replace Abstract: The integration of visual and textual data in Vision-Language Pre-training (VLP) models is crucial for enhancing vision-language understanding. However, the adversarial robustness of these models, especially in the alignment of image-text features, has not yet been sufficiently explored. In this paper, we introduce a novel gradient-based multimodal adversarial attack method, underpinned by contrastive learning, to improve the transferability of multimodal adversarial samples in VLP models. This method concurrently generates adversarial texts and images within imperceptive perturbation, employing both image-text and intra-modal contrastive loss. We evaluate the effectiveness of our approach on image-text retrieval and visual entailment tasks, using publicly available datasets in a black-box setting. Extensive experiments indicate a significant advancement over existing single-modal transfer-based adversarial attack methods and current multimodal adversarial attack approaches.

Youze Wang, Wenbo Hu, Yinpeng Dong, Hanwang Zhang, Hang Su, Richang Hong1/14/2025

arXiv:2403.08505v4 Announce Type: replace-cross Abstract: Existing learning-based stereo image codec adopt sophisticated transformation with simple entropy models derived from single image codecs to encode latent representations. However, those entropy models struggle to effectively capture the spatial-disparity characteristics inherent in stereo images, which leads to suboptimal rate-distortion results. In this paper, we propose a stereo image compression framework, named CAMSIC. CAMSIC independently transforms each image to latent representation and employs a powerful decoder-free Transformer entropy model to capture both spatial and disparity dependencies, by introducing a novel content-aware masked image modeling (MIM) technique. Our content-aware MIM facilitates efficient bidirectional interaction between prior information and estimated tokens, which naturally obviates the need for an extra Transformer decoder. Experiments show that our stereo image codec achieves state-of-the-art rate-distortion performance on two stereo image datasets Cityscapes and InStereo2K with fast encoding and decoding speed. Code is available at https://github.com/Xinjie-Q/CAMSIC.

Xinjie Zhang, Shenyuan Gao, Zhening Liu, Jiawei Shao, Xingtong Ge, Dailan He, Tongda Xu, Yan Wang, Jun Zhang1/14/2025

arXiv:2501.03399v1 Announce Type: new Abstract: 3D Gaussian Splatting is a recognized method for 3D scene representation, known for its high rendering quality and speed. However, its substantial data requirements present challenges for practical applications. In this paper, we introduce an efficient compression technique that significantly reduces storage overhead by using compact representation. We propose a unified architecture that combines point cloud data and feature planes through a progressive tri-plane structure. Our method utilizes 2D feature planes, enabling continuous spatial representation. To further optimize these representations, we incorporate entropy modeling in the frequency domain, specifically designed for standard video codecs. We also propose channel-wise bit allocation to achieve a better trade-off between bitrate consumption and feature plane representation. Consequently, our model effectively leverages spatial correlations within the feature planes to enhance rate-distortion performance using standard, non-differentiable video codecs. Experimental results demonstrate that our method outperforms existing methods in data compactness while maintaining high rendering quality. Our project page is available at https://fraunhoferhhi.github.io/CodecGS

Soonbin Lee, Fangwen Shu, Yago Sanchez, Thomas Schierl, Cornelius Hellge1/8/2025

arXiv:2501.03939v1 Announce Type: new Abstract: Visual Question Answering (VQA) is an evolving research field aimed at enabling machines to answer questions about visual content by integrating image and language processing techniques such as feature extraction, object detection, text embedding, natural language understanding, and language generation. With the growth of multimodal data research, VQA has gained significant attention due to its broad applications, including interactive educational tools, medical image diagnosis, customer service, entertainment, and social media captioning. Additionally, VQA plays a vital role in assisting visually impaired individuals by generating descriptive content from images. This survey introduces a taxonomy of VQA architectures, categorizing them based on design choices and key components to facilitate comparative analysis and evaluation. We review major VQA approaches, focusing on deep learning-based methods, and explore the emerging field of Large Visual Language Models (LVLMs) that have demonstrated success in multimodal tasks like VQA. The paper further examines available datasets and evaluation metrics essential for measuring VQA system performance, followed by an exploration of real-world VQA applications. Finally, we highlight ongoing challenges and future directions in VQA research, presenting open questions and potential areas for further development. This survey serves as a comprehensive resource for researchers and practitioners interested in the latest advancements and future

Ngoc Dung Huynh, Mohamed Reda Bouadjenek, Sunil Aryal, Imran Razzak, Hakim Hacid1/8/2025

arXiv:2412.19139v2 Announce Type: replace Abstract: Video procedure planning, i.e., planning a sequence of action steps given the video frames of start and goal states, is an essential ability for embodied AI. Recent works utilize Large Language Models (LLMs) to generate enriched action step description texts to guide action step decoding. Although LLMs are introduced, these methods decode the action steps into a closed-set of one-hot vectors, limiting the model's capability of generalizing to new steps or tasks. Additionally, fixed action step descriptions based on world-level commonsense may contain noise in specific instances of visual states. In this paper, we propose PlanLLM, a cross-modal joint learning framework with LLMs for video procedure planning. We propose an LLM-Enhanced Planning module which fully uses the generalization ability of LLMs to produce free-form planning output and to enhance action step decoding. We also propose Mutual Information Maximization module to connect world-level commonsense of step descriptions and sample-specific information of visual states, enabling LLMs to employ the reasoning ability to generate step sequences. With the assistance of LLMs, our method can both closed-set and open vocabulary procedure planning tasks. Our PlanLLM achieves superior performance on three benchmarks, demonstrating the effectiveness of our designs.

Dejie Yang, Zijing Zhao, Yang Liu1/8/2025

arXiv:2501.03605v1 Announce Type: new Abstract: With the rapid development of 3D reconstruction technology, the widespread distribution of 3D data has become a future trend. While traditional visual data (such as images and videos) and NeRF-based formats already have mature techniques for copyright protection, steganographic techniques for the emerging 3D Gaussian Splatting (3D-GS) format have yet to be fully explored. To address this, we propose ConcealGS, an innovative method for embedding implicit information into 3D-GS. By introducing the knowledge distillation and gradient optimization strategy based on 3D-GS, ConcealGS overcomes the limitations of NeRF-based models and enhances the robustness of implicit information and the quality of 3D reconstruction. We evaluate ConcealGS in various potential application scenarios, and experimental results have demonstrated that ConcealGS not only successfully recovers implicit information but also has almost no impact on rendering quality, providing a new approach for embedding invisible and recoverable information into 3D models in the future.

Yifeng Yang, Hengyu Liu, Chenxin Li, Yining Sun, Wuyang Li, Yifan Liu, Yiyang Lin, Yixuan Yuan, Nanyang Ye1/8/2025

arXiv:2501.01699v1 Announce Type: new Abstract: Cross-modal hashing (CMH) has appeared as a popular technique for cross-modal retrieval due to its low storage cost and high computational efficiency in large-scale data. Most existing methods implicitly assume that multi-modal data is correctly labeled, which is expensive and even unattainable due to the inevitable imperfect annotations (i.e., noisy labels) in real-world scenarios. Inspired by human cognitive learning, a few methods introduce self-paced learning (SPL) to gradually train the model from easy to hard samples, which is often used to mitigate the effects of feature noise or outliers. It is a less-touched problem that how to utilize SPL to alleviate the misleading of noisy labels on the hash model. To tackle this problem, we propose a new cognitive cross-modal retrieval method called Robust Self-paced Hashing with Noisy Labels (RSHNL), which can mimic the human cognitive process to identify the noise while embracing robustness against noisy labels. Specifically, we first propose a contrastive hashing learning (CHL) scheme to improve multi-modal consistency, thereby reducing the inherent semantic gap. Afterward, we propose center aggregation learning (CAL) to mitigate the intra-class variations. Finally, we propose Noise-tolerance Self-paced Hashing (NSH) that dynamically estimates the learning difficulty for each instance and distinguishes noisy labels through the difficulty level. For all estimated clean pairs, we further adopt a self-paced regularizer to gradually learn hash codes from easy to hard. Extensive experiments demonstrate that the proposed RSHNL performs remarkably well over the state-of-the-art CMH methods.

Ruitao Pu, Yuan Sun, Yang Qin, Zhenwen Ren, Xiaomin Song, Huiming Zheng, Dezhong Peng1/6/2025

arXiv:2501.01717v1 Announce Type: new Abstract: The compression of real-world scanned 3D human dynamic meshes is an emerging research area, driven by applications such as telepresence, virtual reality, and 3D digital streaming. Unlike synthesized dynamic meshes with fixed topology, scanned dynamic meshes often not only have varying topology across frames but also scan defects such as holes and outliers, increasing the complexity of prediction and compression. Additionally, human meshes often combine rigid and non-rigid motions, making accurate prediction and encoding significantly more difficult compared to objects that exhibit purely rigid motion. To address these challenges, we propose a compression method designed for real-world scanned human dynamic meshes, leveraging embedded key nodes. The temporal motion of each vertex is formulated as a distance-weighted combination of transformations from neighboring key nodes, requiring the transmission of solely the key nodes' transformations. To enhance the quality of the KeyNode-driven prediction, we introduce an octree-based residual coding scheme and a Dual-direction prediction mode, which uses I-frames from both directions. Extensive experiments demonstrate that our method achieves significant improvements over the state-of-the-art, with an average bitrate saving of 24.51% across the evaluated sequences, particularly excelling at low bitrates.

Huong Hoang, Truong Nguyen, Pamela Cosman1/6/2025

arXiv:2412.04307v2 Announce Type: replace Abstract: Large models have achieved remarkable performance across various tasks, yet they incur significant computational costs and privacy concerns during both training and inference. Distributed deployment has emerged as a potential solution, but it necessitates the exchange of intermediate information between model segments, with feature representations serving as crucial information carriers. To optimize information exchange, feature coding methods are applied to reduce transmission and storage overhead. Despite its importance, feature coding for large models remains an under-explored area. In this paper, we draw attention to large model feature coding and make three contributions to this field. First, we introduce a comprehensive dataset encompassing diverse features generated by three representative types of large models. Second, we establish unified test conditions, enabling standardized evaluation pipelines and fair comparisons across future feature coding studies. Third, we introduce two baseline methods derived from widely used image coding techniques and benchmark their performance on the proposed dataset. These contributions aim to advance the field of feature coding, facilitating more efficient large model deployment. All source code and the dataset are now available at \href{https://github.com/chansongoal/FCM-LM/tree/master}{https://github.com/chansongoal/FCM-LM/tree/master}.

Changsheng Gao, Yifan Ma, Qiaoxi Chen, Yenan Xu, Dong Liu, Weisi Lin1/6/2025

arXiv:2501.01648v1 Announce Type: new Abstract: RGB-D salient object detection (SOD), aiming to highlight prominent regions of a given scene by jointly modeling RGB and depth information, is one of the challenging pixel-level prediction tasks. Recently, the dual-attention mechanism has been devoted to this area due to its ability to strengthen the detection process. However, most existing methods directly fuse attentional cross-modality features under a manual-mandatory fusion paradigm without considering the inherent discrepancy between the RGB and depth, which may lead to a reduction in performance. Moreover, the long-range dependencies derived from global and local information make it difficult to leverage a unified efficient fusion strategy. Hence, in this paper, we propose the GL-DMNet, a novel dual mutual learning network with global-local awareness. Specifically, we present a position mutual fusion module and a channel mutual fusion module to exploit the interdependencies among different modalities in spatial and channel dimensions. Besides, we adopt an efficient decoder based on cascade transformer-infused reconstruction to integrate multi-level fusion features jointly. Extensive experiments on six benchmark datasets demonstrate that our proposed GL-DMNet performs better than 24 RGB-D SOD methods, achieving an average improvement of ~3% across four evaluation metrics compared to the second-best model (S3Net). Codes and results are available at https://github.com/kingkung2016/GL-DMNet.

Kang Yi, Haoran Tang, Yumeng Li, Jing Xu, Jun Zhang1/6/2025

arXiv:2501.01116v1 Announce Type: new Abstract: Image composition involves extracting a foreground object from one image and pasting it into another image through Image harmonization algorithms (IHAs), which aim to adjust the appearance of the foreground object to better match the background. Existing image quality assessment (IQA) methods may fail to align with human visual preference on image harmonization due to the insensitivity to minor color or light inconsistency. To address the issue and facilitate the advancement of IHAs, we introduce the first Image Quality Assessment Database for image Harmony evaluation (HarmonyIQAD), which consists of 1,350 harmonized images generated by 9 different IHAs, and the corresponding human visual preference scores. Based on this database, we propose a Harmony Image Quality Assessment (HarmonyIQA), to predict human visual preference for harmonized images. Extensive experiments show that HarmonyIQA achieves state-of-the-art performance on human visual preference evaluation for harmonized images, and also achieves competing results on traditional IQA tasks. Furthermore, cross-dataset evaluation also shows that HarmonyIQA exhibits better generalization ability than self-supervised learning-based IQA methods. Both HarmonyIQAD and HarmonyIQA will be made publicly available upon paper publication.

Zitong Xu, Huiyu Duan, Guangji Ma, Liu Yang, Jiarui Wang, Qingbo Wu, Xiongkuo Min, Guangtao Zhai, Patrick Le Callet1/3/2025

arXiv:2409.13194v2 Announce Type: replace Abstract: Rapid developments of AI tools are expected to offer unprecedented assistance to the research of natural science including chemistry. However, neither existing unimodal task-specific specialist models nor emerging general large multimodal models (LMM) can cover the wide range of chemical data modality and task categories. To address the real demands of chemists, a cross-modal Chemical General Intelligence (CGI) system, which serves as a truly practical and useful research assistant utilizing the great potential of LMMs, is in great need. In this work, we introduce the first Cross-modal Dialogue Foundation Model for Chemistry (ChemDFM-X). Diverse multimodal data are generated from an initial modality by approximate calculations and task-specific model predictions. This strategy creates sufficient chemical training corpora, while significantly reducing excessive expense, resulting in an instruction-tuning dataset containing 7.6M data. After instruction finetuning, ChemDFM-X is evaluated on extensive experiments of different chemical tasks with various data modalities. The results demonstrate the capacity of ChemDFM-X for multimodal and inter-modal knowledge comprehension. ChemDFM-X marks a significant milestone toward aligning all modalities in chemistry, a step closer to CGI.

Zihan Zhao, Bo Chen, Jingpiao Li, Lu Chen, Liyang Wen, Pengyu Wang, Zichen Zhu, Danyang Zhang, Ziping Wan, Yansi Li, Zhongyang Dai, Xin Chen, Kai Yu1/3/2025

arXiv:2501.00204v1 Announce Type: new Abstract: Although social bots can be engineered for constructive applications, their potential for misuse in manipulative schemes and malware distribution cannot be overlooked. This dichotomy underscores the critical need to detect social bots on social media platforms. Advances in artificial intelligence have improved the abilities of social bots, allowing them to generate content that is almost indistinguishable from human-created content. These advancements require the development of more advanced detection techniques to accurately identify these automated entities. Given the heterogeneous information landscape on social media, spanning images, texts, and user statistical features, we propose MSM-BD, a Multimodal Social Media Bot Detection approach using heterogeneous information. MSM-BD incorporates specialized encoders for heterogeneous information and introduces a cross-modal fusion technology, Cross-Modal Residual Cross-Attention (CMRCA), to enhance detection accuracy. We validate the effectiveness of our model through extensive experiments using the TwiBot-22 dataset.

Tingxuan Wu, Zhaorui Ma, Yanjun Cui, Ziyi Zhou, Eric Wang1/3/2025