cs.GR
54 postsarXiv:2501.06214v1 Announce Type: new Abstract: Rendering algorithms typically integrate light paths over path space. However, integrating over this one unified space is not necessarily the most efficient approach, and we show that partitioning path space and integrating each of these partitioned spaces with a separate estimator can have advantages. We propose an approach for partitioning path space based on analyzing paths from a standard Monte Carlo estimator and integrating these partitioned path spaces using a Markov Chain Monte Carlo (MCMC) estimator. This also means that integration happens within a sparser subset of path space, so we propose the use of guided proposal distributions in image space to improve efficiency. We show that our method improves image quality over other MCMC integration approaches at the same number of samples.
arXiv:2501.06280v1 Announce Type: new Abstract: During tumor resection surgery, surgeons rely on neuronavigation to locate tumors and other critical structures in the brain. Most neuronavigation is based on preoperative images, such as MRI and ultrasound, to navigate through the brain. Neuronavigation acts like GPS for the brain, guiding neurosurgeons during the procedure. However, brain shift, a dynamic deformation caused by factors such as osmotic concentration, fluid levels, and tissue resection, can invalidate the preoperative images and introduce registration uncertainty. Considering and effectively visualizing this uncertainty has the potential to help surgeons trust the navigation again. Uncertainty has been studied in various domains since the 19th century. Considering uncertainty requires two essential components: 1) quantifying uncertainty; and 2) conveying the quantified values to the observer. There has been growing interest in both of these research areas during the past few decades.
arXiv:2501.06238v1 Announce Type: new Abstract: Feature level sets (FLS) have shown significant potential in the analysis of multi-field data by using traits defined in attribute space to specify features in the domain. In this work, we address key challenges in the practical use of FLS: trait design and feature selection for rendering. To simplify trait design, we propose a Cartesian decomposition of traits into simpler components, making the process more intuitive and computationally efficient. Additionally, we utilize dictionary learning results to automatically suggest point traits. To enhance feature selection, we introduce trait-induced merge trees (TIMTs), a generalization of merge trees for feature level sets, aimed at topologically analyzing tensor fields or general multi-variate data. The leaves in the TIMT represent areas in the input data that are closest to the defined trait, thereby most closely resembling the defined feature. This merge tree provides a hierarchy of features, enabling the querying of the most relevant and persistent features. Our method includes various query techniques for the tree, allowing the highlighting of different aspects. We demonstrate the cross-application capabilities of this approach through five case studies from different domains.
arXiv:2501.07574v1 Announce Type: new Abstract: We introduce Uncommon Objects in 3D (uCO3D), a new object-centric dataset for 3D deep learning and 3D generative AI. uCO3D is the largest publicly-available collection of high-resolution videos of objects with 3D annotations that ensures full-360$^{\circ}$ coverage. uCO3D is significantly more diverse than MVImgNet and CO3Dv2, covering more than 1,000 object categories. It is also of higher quality, due to extensive quality checks of both the collected videos and the 3D annotations. Similar to analogous datasets, uCO3D contains annotations for 3D camera poses, depth maps and sparse point clouds. In addition, each object is equipped with a caption and a 3D Gaussian Splat reconstruction. We train several large 3D models on MVImgNet, CO3Dv2, and uCO3D and obtain superior results using the latter, showing that uCO3D is better for learning applications.
arXiv:2501.07478v1 Announce Type: new Abstract: 3D Gaussian Splatting (3DGS) excels at producing highly detailed 3D reconstructions, but these scenes often require specialised renderers for effective visualisation. In contrast, point clouds are a widely used 3D representation and are compatible with most popular 3D processing software, yet converting 3DGS scenes into point clouds is a complex challenge. In this work we introduce 3DGS-to-PC, a flexible and highly customisable framework that is capable of transforming 3DGS scenes into dense, high-accuracy point clouds. We sample points probabilistically from each Gaussian as a 3D density function. We additionally threshold new points using the Mahalanobis distance to the Gaussian centre, preventing extreme outliers. The result is a point cloud that closely represents the shape encoded into the 3D Gaussian scene. Individual Gaussians use spherical harmonics to adapt colours depending on view, and each point may contribute only subtle colour hints to the resulting rendered scene. To avoid spurious or incorrect colours that do not fit with the final point cloud, we recalculate Gaussian colours via a customised image rendering approach, assigning each Gaussian the colour of the pixel to which it contributes most across all views. 3DGS-to-PC also supports mesh generation through Poisson Surface Reconstruction, applied to points sampled from predicted surface Gaussians. This allows coloured meshes to be generated from 3DGS scenes without the need for re-training. This package is highly customisable and capability of simple integration into existing 3DGS pipelines. 3DGS-to-PC provides a powerful tool for converting 3DGS data into point cloud and surface-based formats.
arXiv:2406.09328v2 Announce Type: replace Abstract: This work presents a differentiable rendering approach that allows latent fractal flame parameters to be learned from image supervision using gradient descent optimization. The approach extends the state-of-the-art in differentiable iterated function system fractal rendering through support for color images, non-linear generator functions, and multi-fractal compositions. With this approach, artists can use reference images to quickly and intuitively control the creation of fractals. We describe the approach and conduct a series of experiments exploring its use, culminating in the creation of complex and colorful fractal artwork based on famous paintings.
arXiv:2501.06216v1 Announce Type: new Abstract: Dufaycolor, an additive color photography process produced from 1935 to the late 1950s, represents one of the most advanced iterations of this technique. This paper presents ongoing research and development of an open-source Color-Screen tool designed to reconstruct the original colors of additive color photographs. We discuss the incorporation of historical measurements of dyes used in the production of the color-screen filter (r\'eseau) to achieve accurate color recovery.
arXiv:2501.03717v1 Announce Type: new Abstract: To perform image editing based on single-view, inverse physically based rendering, we present a method combining a learning-based approach with progressive differentiable rendering. Given an image, our method leverages neural networks to predict initial material properties. Progressive differentiable rendering is then used to optimize the environment map and refine the material properties with the goal of closely matching the rendered result to the input image. We require only a single image while other inverse rendering methods based on the rendering equation require multiple views. In comparison to single-view methods that rely on neural renderers, our approach achieves more realistic light material interactions, accurate shadows, and global illumination. Furthermore, with optimized material properties and illumination, our method enables a variety of tasks, including physically based material editing, object insertion, and relighting. We also propose a method for material transparency editing that operates effectively without requiring full scene geometry. Compared with methods based on Stable Diffusion, our approach offers stronger interpretability and more realistic light refraction based on empirical results.
arXiv:2501.03830v1 Announce Type: new Abstract: Convolutional neural networks (CNNs) have been pivotal in various 2D image analysis tasks, including computer vision, image indexing and retrieval or semantic classification. Extending CNNs to 3D data such as point clouds and 3D meshes raises significant challenges since the very basic convolution and pooling operators need to be completely re-visited and re-defined in an appropriate manner to tackle irregular connectivity issues. In this paper, we introduce MeshConv3D, a 3D mesh-dedicated methodology integrating specialized convolution and face collapse-based pooling operators. MeshConv3D operates directly on meshes of arbitrary topology, without any need of prior re-meshing/conversion techniques. In order to validate our approach, we have considered a semantic classification task. The experimental results obtained on three distinct benchmark datasets show that the proposed approach makes it possible to achieve equivalent or superior classification results, while minimizing the related memory footprint and computational load.
arXiv:2403.05594v3 Announce Type: replace Abstract: We present and discuss the results of a qualitative analysis of visualization images to derive an image-based typology of visualizations. For each image, we seek to identify its main focus or the essential stimuli. As a result, we derived 10 image-based visualization types. We describe coding decisions we made in the derivation process. The resulting image typology can serve a number of purposes: enabling researchers and practitioners to identify visual design styles, facilitating the categorization of visualization images for the purpose of research and teaching, enabling researchers to study the evolution of the community and its research output over time, and facilitating a discussion of standardization in visualization. In addition, the tool and dataset enable scholars to closely examine the images and how they are published and communicated in our community. osf.io/dxjwt presents a pre-registration and all supplemental materials.
arXiv:2501.03847v1 Announce Type: new Abstract: Diffusion models have demonstrated impressive performance in generating high-quality videos from text prompts or images. However, precise control over the video generation process, such as camera manipulation or content editing, remains a significant challenge. Existing methods for controlled video generation are typically limited to a single control type, lacking the flexibility to handle diverse control demands. In this paper, we introduce Diffusion as Shader (DaS), a novel approach that supports multiple video control tasks within a unified architecture. Our key insight is that achieving versatile video control necessitates leveraging 3D control signals, as videos are fundamentally 2D renderings of dynamic 3D content. Unlike prior methods limited to 2D control signals, DaS leverages 3D tracking videos as control inputs, making the video diffusion process inherently 3D-aware. This innovation allows DaS to achieve a wide range of video controls by simply manipulating the 3D tracking videos. A further advantage of using 3D tracking videos is their ability to effectively link frames, significantly enhancing the temporal consistency of the generated videos. With just 3 days of fine-tuning on 8 H800 GPUs using less than 10k videos, DaS demonstrates strong control capabilities across diverse tasks, including mesh-to-video generation, camera control, motion transfer, and object manipulation.
arXiv:2501.01628v1 Announce Type: new Abstract: 3D visualization and rendering in HPC are very heterogenous applications, though fundamentally the tasks involved are well-defined and do not differ much from application to application. The Khronos Group's ANARI standard seeks to consolidate 3D rendering across sci-vis applications. This paper makes an effort to convey challenges of 3D rendering and visualization with ANARI in the context of HPC, where the data does not fit within a single node or GPU but must be distributed. It also provides a gentle introduction to parallel rendering concepts and challenges to practitioners from the field of HPC in general. Finally, we present a case study showcasing data parallel rendering on the new supercomputer RAMSES at the University of Cologne.
arXiv:2501.01589v1 Announce Type: new Abstract: We introduce D$^3$-Human, a method for reconstructing Dynamic Disentangled Digital Human geometry from monocular videos. Past monocular video human reconstruction primarily focuses on reconstructing undecoupled clothed human bodies or only reconstructing clothing, making it difficult to apply directly in applications such as animation production. The challenge in reconstructing decoupled clothing and body lies in the occlusion caused by clothing over the body. To this end, the details of the visible area and the plausibility of the invisible area must be ensured during the reconstruction process. Our proposed method combines explicit and implicit representations to model the decoupled clothed human body, leveraging the robustness of explicit representations and the flexibility of implicit representations. Specifically, we reconstruct the visible region as SDF and propose a novel human manifold signed distance field (hmSDF) to segment the visible clothing and visible body, and then merge the visible and invisible body. Extensive experimental results demonstrate that, compared with existing reconstruction schemes, D$^3$-Human can achieve high-quality decoupled reconstruction of the human body wearing different clothing, and can be directly applied to clothing transfer and animation.
arXiv:2501.01424v1 Announce Type: new Abstract: We introduce a method for composing object-level visual prompts within a text-to-image diffusion model. Our approach addresses the task of generating semantically coherent compositions across diverse scenes and styles, similar to the versatility and expressiveness offered by text prompts. A key challenge in this task is to preserve the identity of the objects depicted in the input visual prompts, while also generating diverse compositions across different images. To address this challenge, we introduce a new KV-mixed cross-attention mechanism, in which keys and values are learned from distinct visual representations. The keys are derived from an encoder with a small bottleneck for layout control, whereas the values come from a larger bottleneck encoder that captures fine-grained appearance details. By mixing keys and values from these complementary sources, our model preserves the identity of the visual prompts while supporting flexible variations in object arrangement, pose, and composition. During inference, we further propose object-level compositional guidance to improve the method's identity preservation and layout correctness. Results show that our technique produces diverse scene compositions that preserve the unique characteristics of each visual prompt, expanding the creative potential of text-to-image generation.
arXiv:2401.12977v2 Announce Type: replace Abstract: Inverse rendering seeks to recover 3D geometry, surface material, and lighting from captured images, enabling advanced applications such as novel-view synthesis, relighting, and virtual object insertion. However, most existing techniques rely on high dynamic range (HDR) images as input, limiting accessibility for general users. In response, we introduce IRIS, an inverse rendering framework that recovers the physically based material, spatially-varying HDR lighting, and camera response functions from multi-view, low-dynamic-range (LDR) images. By eliminating the dependence on HDR input, we make inverse rendering technology more accessible. We evaluate our approach on real-world and synthetic scenes and compare it with state-of-the-art methods. Our results show that IRIS effectively recovers HDR lighting, accurate material, and plausible camera response functions, supporting photorealistic relighting and object insertion.
arXiv:2501.01393v1 Announce Type: new Abstract: Garment animation is ubiquitous in various applications, such as virtual reality, gaming, and film producing. Recently, learning-based approaches obtain compelling performance in animating diverse garments under versatile scenarios. Nevertheless, to mimic the deformations of the observed garments, data-driven methods require large scale of garment data, which are both resource-wise expensive and time-consuming. In addition, forcing models to match the dynamics of observed garment animation may hinder the potentials to generalize to unseen cases. In this paper, instead of using garment-wise supervised-learning we adopt a disentangled scheme to learn how to animate observed garments: 1). learning constitutive behaviors from the observed cloth; 2). dynamically animate various garments constrained by the learned constitutive laws. Specifically, we propose Energy Unit network (EUNet) to model the constitutive relations in the format of energy. Without the priors from analytical physics models and differentiable simulation engines, EUNet is able to directly capture the constitutive behaviors from the observed piece of cloth and uniformly describes the change of energy caused by deformations, such as stretching and bending. We further apply the pre-trained EUNet to animate various garments based on energy optimizations. The disentangled scheme alleviates the need of garment data and enables us to utilize the dynamics of a piece of cloth for animating garments. Experiments show that while EUNet effectively delivers the energy gradients due to the deformations, models constrained by EUNet achieve more stable and physically plausible performance comparing with those trained in garment-wise supervised manner. Code is available at https://github.com/ftbabi/EUNet_NeurIPS2024.git .
arXiv:2409.03164v2 Announce Type: replace Abstract: The high performance of tree ensemble classifiers benefits from a large set of rules, which, in turn, makes the models hard to understand. To improve interpretability, existing methods extract a subset of rules for approximation using model reduction techniques. However, by focusing on the reduced rule set, these methods often lose fidelity and ignore anomalous rules that, despite their infrequency, play crucial roles in real-world applications. This paper introduces a scalable visual analysis method to explain tree ensemble classifiers that contain tens of thousands of rules. The key idea is to address the issue of losing fidelity by adaptively organizing the rules as a hierarchy rather than reducing them. To ensure the inclusion of anomalous rules, we develop an anomaly-biased model reduction method to prioritize these rules at each hierarchical level. Synergized with this hierarchical organization of rules, we develop a matrix-based hierarchical visualization to support exploration at different levels of detail. Our quantitative experiments and case studies demonstrate how our method fosters a deeper understanding of both common and anomalous rules, thereby enhancing interpretability without sacrificing comprehensiveness.
arXiv:2501.00625v1 Announce Type: new Abstract: Recently released open-source pre-trained foundational image segmentation and object detection models (SAM2+GroundingDINO) allow for geometrically consistent segmentation of objects of interest in multi-view 2D images. Users can use text-based or click-based prompts to segment objects of interest without requiring labeled training datasets. Gaussian Splatting allows for the learning of the 3D representation of a scene's geometry and radiance based on 2D images. Combining Google Earth Studio, SAM2+GroundingDINO, 2D Gaussian Splatting, and our improvements in mask refinement based on morphological operations and contour simplification, we created a pipeline to extract the 3D mesh of any building based on its name, address, or geographic coordinates.
arXiv:2501.01362v1 Announce Type: new Abstract: Complex geometric tasks such as geometric modeling, physical simulation, and texture parametrization often involve the embedding of many complex sub-domains with potentially different dimensions. These tasks often require evolving the geometry and topology of the discretizations of these sub-domains, and guaranteeing a \emph{consistent} overall embedding for the multiplicity of sub-domains is required to define boundary conditions. We propose a data structure and algorithmic framework for hierarchically encoding a collection of meshes, enabling topological and geometric changes to be automatically propagated with coherent correspondences between them. We demonstrate the effectiveness of our approach in surface mesh decimation while preserving UV seams, periodic 2D/3D meshing, and extending the TetWild algorithm to ensure topology preservation of the embedded structures.
arXiv:2501.00601v1 Announce Type: new Abstract: Synthesizing photo-realistic visual observations from an ego vehicle's driving trajectory is a critical step towards scalable training of self-driving models. Reconstruction-based methods create 3D scenes from driving logs and synthesize geometry-consistent driving videos through neural rendering, but their dependence on costly object annotations limits their ability to generalize to in-the-wild driving scenarios. On the other hand, generative models can synthesize action-conditioned driving videos in a more generalizable way but often struggle with maintaining 3D visual consistency. In this paper, we present DreamDrive, a 4D spatial-temporal scene generation approach that combines the merits of generation and reconstruction, to synthesize generalizable 4D driving scenes and dynamic driving videos with 3D consistency. Specifically, we leverage the generative power of video diffusion models to synthesize a sequence of visual references and further elevate them to 4D with a novel hybrid Gaussian representation. Given a driving trajectory, we then render 3D-consistent driving videos via Gaussian splatting. The use of generative priors allows our method to produce high-quality 4D scenes from in-the-wild driving data, while neural rendering ensures 3D-consistent video generation from the 4D scenes. Extensive experiments on nuScenes and street view images demonstrate that DreamDrive can generate controllable and generalizable 4D driving scenes, synthesize novel views of driving videos with high fidelity and 3D consistency, decompose static and dynamic elements in a self-supervised manner, and enhance perception and planning tasks for autonomous driving.