astro-ph.EP

4 posts

arXiv:2501.01484v1 Announce Type: cross Abstract: Debris disks, which consist of dust, planetesimals, planets, and gas, offer a unique window into the mineralogical composition of their parent bodies, especially during the critical phase of terrestrial planet formation spanning 10 to a few hundred million years. Observations from the $\textit{Spitzer}$ Space Telescope have unveiled thousands of debris disks, yet systematic studies remain scarce, let alone those with unsupervised clustering techniques. This study introduces $\texttt{CLUES}$ (CLustering UnsupErvised with Sequencer), a novel, non-parametric, fully-interpretable machine-learning spectral analysis tool designed to analyze and classify the spectral data of debris disks. $\texttt{CLUES}$ combines multiple unsupervised clustering methods with multi-scale distance measures to discern new groupings and trends, offering insights into compositional diversity and geophysical processes within these disks. Our analysis allows us to explore a vast parameter space in debris disk mineralogy and also offers broader applications in fields such as protoplanetary disks and solar system objects. This paper details the methodology, implementation, and initial results of $\texttt{CLUES}$, setting the stage for more detailed follow-up studies focusing on debris disk mineralogy and demographics.

Cicero X. Lu, Tushar Mittal, Christine H. Chen, Alexis Y. Li, Kadin Worthen, B. A. Sargent, Carey M. Lisse, G. C. Sloan, Dean C. Hines, Dan M. Watson, Isabel Rebollido, Bin B. Ren, Joel D. Green1/6/2025

arXiv:2501.01912v1 Announce Type: cross Abstract: Direct imaging of exoplanets is crucial for advancing our understanding of planetary systems beyond our solar system, but it faces significant challenges due to the high contrast between host stars and their planets. Wavefront aberrations introduce speckles in the telescope science images, which are patterns of diffracted starlight that can mimic the appearance of planets, complicating the detection of faint exoplanet signals. Traditional post-processing methods, operating primarily in the image intensity domain, do not integrate wavefront sensing data. These data, measured mainly for adaptive optics corrections, have been overlooked as a potential resource for post-processing, partly due to the challenge of the evolving nature of wavefront aberrations. In this paper, we present a differentiable rendering approach that leverages these wavefront sensing data to improve exoplanet detection. Our differentiable renderer models wave-based light propagation through a coronagraphic telescope system, allowing gradient-based optimization to significantly improve starlight subtraction and increase sensitivity to faint exoplanets. Simulation experiments based on the James Webb Space Telescope configuration demonstrate the effectiveness of our approach, achieving substantial improvements in contrast and planet detection limits. Our results showcase how the computational advancements enabled by differentiable rendering can revitalize previously underexploited wavefront data, opening new avenues for enhancing exoplanet imaging and characterization.

Brandon Y. Feng, Rodrigo Ferrer-Ch\'avez, Aviad Levis, Jason J. Wang, Katherine L. Bouman, William T. Freeman1/6/2025

arXiv:2501.00020v1 Announce Type: cross Abstract: This study introduces a novel approach that integrates the magnetic field data correction from the Tianwen-1 Mars mission with a neural network architecture constrained by physical principles derived from Maxwell's equation equations. By employing a Transformer based model capable of efficiently handling sequential data, the method corrects measurement anomalies caused by satellite dynamics, instrument interference, and environmental noise. As a result, it significantly improves both the accuracy and the physical consistency of the calibrated data. Compared to traditional methods that require long data segments and manual intervention often taking weeks or even months to complete this new approach can finish calibration in just minutes to hours, and predictions are made within seconds. This innovation not only accelerates the process of space weather modeling and planetary magnetospheric studies but also provides a robust framework for future planetary exploration and solar wind interaction research.

Beibei Li (Deep Space Exploration Laboratory), Yutian Chi (Deep Space Exploration Laboratory), Yuming Wang (Deep Space Exploration Laboratory,School of Earth,Space Sciences University of Science,Technology of China)1/3/2025

arXiv:2410.06804v2 Announce Type: replace-cross Abstract: Producing optimized and accurate transmission spectra of exoplanets from telescope data has traditionally been a manual and labor-intensive procedure. Here we present the results of the first attempt to improve and standardize this procedure using artificial intelligence (AI) based processing of light curves and spectroscopic data from transiting exoplanets observed with the Hubble Space Telescope's (HST) Wide Field Camera 3 (WFC3) instrument. We implement an AI-based parameter optimizer that autonomously operates the Eureka pipeline to produce homogeneous transmission spectra of publicly available HST WFC3 datasets, spanning exoplanet types from hot Jupiters to sub-Neptunes. Surveying 42 exoplanets with temperatures between 280 and 2580 Kelvin, we confirm modeled relationships between the amplitude of the water band at 1.4um in hot Jupiters and their equilibrium temperatures. We also identify a similar, novel trend in Neptune/sub-Neptune atmospheres, but shifted to cooler temperatures. Excitingly, a planet mass versus equilibrium temperature diagram reveals a "Clear Sky Corridor," where planets between 700 and 1700 Kelvin (depending on the mass) show stronger 1.4um H2O band measurements. This novel trend points to metallicity as a potentially important driver of aerosol formation. As we unveil and include these new discoveries into our understanding of aerosol formation, we enter a thrilling future for the study of exoplanet atmospheres. With HST sculpting this foundational understanding for aerosol formation in various exoplanet types, ranging from Jupiters to sub-Neptunes, we present a compelling platform for the James Webb Space Telescope (JWST) to discover similar atmospheric trends for more planets across a broader wavelength range.

Reza Ashtari, Kevin B. Stevenson, David Sing, Mercedes Lopez-Morales, Munazza K. Alam, Nikolay K. Nikolov, Thomas M. Evans-Soma12/23/2024