physics.space-ph
2 postsarXiv:2501.01011v1 Announce Type: new Abstract: The application of machine learning to the study of coronal mass ejections (CMEs) and their impacts on Earth has seen significant growth recently. Understanding and forecasting CME geoeffectiveness is crucial for protecting infrastructure in space and ensuring the resilience of technological systems on Earth. Here we present GeoCME, a deep-learning framework designed to predict, deterministically or probabilistically, whether a CME event that arrives at Earth will cause a geomagnetic storm. A geomagnetic storm is defined as a disturbance of the Earth's magnetosphere during which the minimum Dst index value is less than -50 nT. GeoCME is trained on observations from the instruments including LASCO C2, EIT and MDI on board the Solar and Heliospheric Observatory (SOHO), focusing on a dataset that includes 136 halo/partial halo CMEs in Solar Cycle 23. Using ensemble and transfer learning techniques, GeoCME is capable of extracting features hidden in the SOHO observations and making predictions based on the learned features. Our experimental results demonstrate the good performance of GeoCME, achieving a Matthew's correlation coefficient of 0.807 and a true skill statistics score of 0.714 when the tool is used as a deterministic prediction model. When the tool is used as a probabilistic forecasting model, it achieves a Brier score of 0.094 and a Brier skill score of 0.493. These results are promising, showing that the proposed GeoCME can help enhance our understanding of CME-triggered solar-terrestrial interactions.
arXiv:2501.00020v1 Announce Type: cross Abstract: This study introduces a novel approach that integrates the magnetic field data correction from the Tianwen-1 Mars mission with a neural network architecture constrained by physical principles derived from Maxwell's equation equations. By employing a Transformer based model capable of efficiently handling sequential data, the method corrects measurement anomalies caused by satellite dynamics, instrument interference, and environmental noise. As a result, it significantly improves both the accuracy and the physical consistency of the calibrated data. Compared to traditional methods that require long data segments and manual intervention often taking weeks or even months to complete this new approach can finish calibration in just minutes to hours, and predictions are made within seconds. This innovation not only accelerates the process of space weather modeling and planetary magnetospheric studies but also provides a robust framework for future planetary exploration and solar wind interaction research.