q-fin.ST
8 postsarXiv:2501.00034v1 Announce Type: cross Abstract: With the widespread application of machine learning in financial risk management, conventional wisdom suggests that longer training periods and more feature variables contribute to improved model performance. This paper, focusing on mortgage default prediction, empirically discovers a phenomenon that contradicts traditional knowledge: in time series prediction, increased training data timespan and additional non-critical features actually lead to significant deterioration in prediction effectiveness. Using Fannie Mae's mortgage data, the study compares predictive performance across different time window lengths (2012-2022) and feature combinations, revealing that shorter time windows (such as single-year periods) paired with carefully selected key features yield superior prediction results. The experimental results indicate that extended time spans may introduce noise from historical data and outdated market patterns, while excessive non-critical features interfere with the model's learning of core default factors. This research not only challenges the traditional "more is better" approach in data modeling but also provides new insights and practical guidance for feature selection and time window optimization in financial risk prediction.
arXiv:2412.19372v2 Announce Type: replace-cross Abstract: High-frequency trading (HFT) has transformed modern financial markets, making reliable short-term price forecasting models essential. In this study, we present a novel approach to mid-price forecasting using Level 1 limit order book (LOB) data from NASDAQ, focusing on 100 U.S. stocks from the S&P 500 index during the period from September to November 2022. Expanding on our previous work with Radial Basis Function Neural Networks (RBFNN), which leveraged automated feature importance techniques based on mean decrease impurity (MDI) and gradient descent (GD), we introduce the Adaptive Learning Policy Engine (ALPE) - a reinforcement learning (RL)-based agent designed for batch-free, immediate mid-price forecasting. ALPE incorporates adaptive epsilon decay to dynamically balance exploration and exploitation, outperforming a diverse range of highly effective machine learning (ML) and deep learning (DL) models in forecasting performance.
arXiv:2412.18202v1 Announce Type: new Abstract: This paper leverages machine learning algorithms to forecast and analyze financial time series. The process begins with a denoising autoencoder to filter out random noise fluctuations from the main contract price data. Then, one-dimensional convolution reduces the dimensionality of the filtered data and extracts key information. The filtered and dimensionality-reduced price data is fed into a GANs network, and its output serve as input of a fully connected network. Through cross-validation, a model is trained to capture features that precede large price fluctuations. The model predicts the likelihood and direction of significant price changes in real-time price sequences, placing trades at moments of high prediction accuracy. Empirical results demonstrate that using autoencoders and convolution to filter and denoise financial data, combined with GANs, achieves a certain level of predictive performance, validating the capabilities of machine learning algorithms to discover underlying patterns in financial sequences. Keywords - CNN;GANs; Cryptocurrency; Prediction.
arXiv:2410.21858v4 Announce Type: replace-cross Abstract: We develop a nonparametric, kernel-based joint estimator for conditional mean and covariance matrices in large and unbalanced panels. The estimator is supported by rigorous consistency results and finite-sample guarantees, ensuring its reliability for empirical applications in Finance. We apply it to an extensive panel of monthly US stock excess returns from 1962 to 2021, using macroeconomic and firm-specific covariates as conditioning variables. The estimator effectively captures time-varying cross-sectional dependencies, demonstrating robust statistical and economic performance. We find that idiosyncratic risk explains, on average, more than 75% of the cross-sectional variance.
arXiv:2412.16333v1 Announce Type: new Abstract: As several studies have shown, predicting credit risk is still a major concern for the financial services industry and is receiving a lot of scholarly interest. This area of study is crucial because it aids financial organizations in determining the probability that borrowers would default, which has a direct bearing on lending choices and risk management tactics. Despite the progress made in this domain, there is still a substantial knowledge gap concerning consumer actions that take place prior to the filing of credit card applications. The objective of this study is to predict customer responses to mail campaigns and assess the likelihood of default among those who engage. This research employs advanced machine learning techniques, specifically logistic regression and XGBoost, to analyze consumer behavior and predict responses to direct mail campaigns. By integrating different data preprocessing strategies, including imputation and binning, we enhance the robustness and accuracy of our predictive models. The results indicate that XGBoost consistently outperforms logistic regression across various metrics, particularly in scenarios using categorical binning and custom imputation. These findings suggest that XGBoost is particularly effective in handling complex data structures and provides a strong predictive capability in assessing credit risk.
arXiv:2412.16160v1 Announce Type: cross Abstract: This study presents an autonomous experimental machine learning protocol for high-frequency trading (HFT) stock price forecasting that involves a dual competitive feature importance mechanism and clustering via shallow neural network topology for fast training. By incorporating the k-means algorithm into the radial basis function neural network (RBFNN), the proposed method addresses the challenges of manual clustering and the reliance on potentially uninformative features. More specifically, our approach involves a dual competitive mechanism for feature importance, combining the mean-decrease impurity (MDI) method and a gradient descent (GD) based feature importance mechanism. This approach, tested on HFT Level 1 order book data for 20 S\&P 500 stocks, enhances the forecasting ability of the RBFNN regressor. Our findings suggest that an autonomous approach to feature selection and clustering is crucial, as each stock requires a different input feature space. Overall, by automating the feature selection and clustering processes, we remove the need for manual topological grid search and provide a more efficient way to predict LOB's mid-price.
arXiv:2412.16083v1 Announce Type: new Abstract: The increasing demand for privacy-preserving data analytics in finance necessitates solutions for synthetic data generation that rigorously uphold privacy standards. We introduce DP-Fed-FinDiff framework, a novel integration of Differential Privacy, Federated Learning and Denoising Diffusion Probabilistic Models designed to generate high-fidelity synthetic tabular data. This framework ensures compliance with stringent privacy regulations while maintaining data utility. We demonstrate the effectiveness of DP-Fed-FinDiff on multiple real-world financial datasets, achieving significant improvements in privacy guarantees without compromising data quality. Our empirical evaluations reveal the optimal trade-offs between privacy budgets, client configurations, and federated optimization strategies. The results affirm the potential of DP-Fed-FinDiff to enable secure data sharing and robust analytics in highly regulated domains, paving the way for further advances in federated learning and privacy-preserving data synthesis.
arXiv:2412.15298v1 Announce Type: new Abstract: We argue that the Declarative Self-improving Python (DSPy) optimizers are a way to align the large language model (LLM) prompts and their evaluations to the human annotations. We present a comparative analysis of five teleprompter algorithms, namely, Cooperative Prompt Optimization (COPRO), Multi-Stage Instruction Prompt Optimization (MIPRO), BootstrapFewShot, BootstrapFewShot with Optuna, and K-Nearest Neighbor Few Shot, within the DSPy framework with respect to their ability to align with human evaluations. As a concrete example, we focus on optimizing the prompt to align hallucination detection (using LLM as a judge) to human annotated ground truth labels for a publicly available benchmark dataset. Our experiments demonstrate that optimized prompts can outperform various benchmark methods to detect hallucination, and certain telemprompters outperform the others in at least these experiments.