q-fin.CP
4 postsarXiv:2412.18174v1 Announce Type: new Abstract: Recent advancements have underscored the potential of large language model (LLM)-based agents in financial decision-making. Despite this progress, the field currently encounters two main challenges: (1) the lack of a comprehensive LLM agent framework adaptable to a variety of financial tasks, and (2) the absence of standardized benchmarks and consistent datasets for assessing agent performance. To tackle these issues, we introduce \textsc{InvestorBench}, the first benchmark specifically designed for evaluating LLM-based agents in diverse financial decision-making contexts. InvestorBench enhances the versatility of LLM-enabled agents by providing a comprehensive suite of tasks applicable to different financial products, including single equities like stocks, cryptocurrencies and exchange-traded funds (ETFs). Additionally, we assess the reasoning and decision-making capabilities of our agent framework using thirteen different LLMs as backbone models, across various market environments and tasks. Furthermore, we have curated a diverse collection of open-source, multi-modal datasets and developed a comprehensive suite of environments for financial decision-making. This establishes a highly accessible platform for evaluating financial agents' performance across various scenarios.
arXiv:2412.17314v1 Announce Type: new Abstract: This study proposes a multi-task learning framework based on ResNeXt, aiming to solve the problem of feature extraction and task collaborative optimization in financial data mining. Financial data usually has the complex characteristics of high dimensionality, nonlinearity, and time series, and is accompanied by potential correlations between multiple tasks, making it difficult for traditional methods to meet the needs of data mining. This study introduces the ResNeXt model into the multi-task learning framework and makes full use of its group convolution mechanism to achieve efficient extraction of local patterns and global features of financial data. At the same time, through the design of task sharing layers and dedicated layers, it is established between multiple related tasks. Deep collaborative optimization relationships. Through flexible multi-task loss weight design, the model can effectively balance the learning needs of different tasks and improve overall performance. Experiments are conducted on a real S&P 500 financial data set, verifying the significant advantages of the proposed framework in classification and regression tasks. The results indicate that, when compared to other conventional deep learning models, the proposed method delivers superior performance in terms of accuracy, F1 score, root mean square error, and other metrics, highlighting its outstanding effectiveness and robustness in handling complex financial data. This research provides an efficient and adaptable solution for financial data mining, and at the same time opens up a new research direction for the combination of multi-task learning and deep learning, which has important theoretical significance and practical application value.
arXiv:2408.09420v4 Announce Type: replace-cross Abstract: In the Venture Capital (VC) industry, predicting the success of startups is challenging due to limited financial data and the need for subjective revenue forecasts. Previous methods based on time series analysis often fall short as they fail to incorporate crucial inter-company relationships such as competition and collaboration. To fill the gap, this paper aims to introduce a novel approach using GraphRAG augmented time series model. With GraphRAG, time series predictive methods are enhanced by integrating these vital relationships into the analysis framework, allowing for a more dynamic understanding of the startup ecosystem in venture capital. Our experimental results demonstrate that our model significantly outperforms previous models in startup success predictions.
arXiv:2412.15222v1 Announce Type: cross Abstract: This study explores the application of generative adversarial networks in financial market supervision, especially for solving the problem of data imbalance to improve the accuracy of risk prediction. Since financial market data are often imbalanced, especially high-risk events such as market manipulation and systemic risk occur less frequently, traditional models have difficulty effectively identifying these minority events. This study proposes to generate synthetic data with similar characteristics to these minority events through GAN to balance the dataset, thereby improving the prediction performance of the model in financial supervision. Experimental results show that compared with traditional oversampling and undersampling methods, the data generated by GAN has significant advantages in dealing with imbalance problems and improving the prediction accuracy of the model. This method has broad application potential in financial regulatory agencies such as the U.S. Securities and Exchange Commission (SEC), the Financial Industry Regulatory Authority (FINRA), the Federal Deposit Insurance Corporation (FDIC), and the Federal Reserve.