physics.acc-ph

2 posts

arXiv:2501.04305v2 Announce Type: replace Abstract: Adaptive physics-informed super-resolution diffusion is developed for non-invasive virtual diagnostics of the 6D phase space density of charged particle beams. An adaptive variational autoencoder (VAE) embeds initial beam condition images and scalar measurements to a low-dimensional latent space from which a 326 pixel 6D tensor representation of the beam's 6D phase space density is generated. Projecting from a 6D tensor generates physically consistent 2D projections. Physics-guided super-resolution diffusion transforms low-resolution images of the 6D density to high resolution 256x256 pixel images. Un-supervised adaptive latent space tuning enables tracking of time-varying beams without knowledge of time-varying initial conditions. The method is demonstrated with experimental data and multi-particle simulations at the HiRES UED. The general approach is applicable to a wide range of complex dynamic systems evolving in high-dimensional phase space. The method is shown to be robust to distribution shift without re-training.

Alexander Scheinker1/14/2025

arXiv:2409.06336v3 Announce Type: replace-cross Abstract: As particle accelerators grow in complexity, traditional control methods face increasing challenges in achieving optimal performance. This paper envisions a paradigm shift: a decentralized multi-agent framework for accelerator control, powered by Large Language Models (LLMs) and distributed among autonomous agents. We present a proposition of a self-improving decentralized system where intelligent agents handle high-level tasks and communication and each agent is specialized to control individual accelerator components. This approach raises some questions: What are the future applications of AI in particle accelerators? How can we implement an autonomous complex system such as a particle accelerator where agents gradually improve through experience and human feedback? What are the implications of integrating a human-in-the-loop component for labeling operational data and providing expert guidance? We show three examples, where we demonstrate the viability of such architecture.

Antonin Sulc, Thorsten Hellert, Raimund Kammering, Hayden Hoschouer, Jason St. John12/24/2024