q-bio.BM

9 posts

arXiv:2409.03773v2 Announce Type: replace-cross Abstract: Accurately measuring protein-RNA binding affinity is crucial in many biological processes and drug design. Previous computational methods for protein-RNA binding affinity prediction rely on either sequence or structure features, unable to capture the binding mechanisms comprehensively. The recent emerging pre-trained language models trained on massive unsupervised sequences of protein and RNA have shown strong representation ability for various in-domain downstream tasks, including binding site prediction. However, applying different-domain language models collaboratively for complex-level tasks remains unexplored. In this paper, we propose CoPRA to bridge pre-trained language models from different biological domains via Complex structure for Protein-RNA binding Affinity prediction. We demonstrate for the first time that cross-biological modal language models can collaborate to improve binding affinity prediction. We propose a Co-Former to combine the cross-modal sequence and structure information and a bi-scope pre-training strategy for improving Co-Former's interaction understanding. Meanwhile, we build the largest protein-RNA binding affinity dataset PRA310 for performance evaluation. We also test our model on a public dataset for mutation effect prediction. CoPRA reaches state-of-the-art performance on all the datasets. We provide extensive analyses and verify that CoPRA can (1) accurately predict the protein-RNA binding affinity; (2) understand the binding affinity change caused by mutations; and (3) benefit from scaling data and model size.

Rong Han, Xiaohong Liu, Tong Pan, Jing Xu, Xiaoyu Wang, Wuyang Lan, Zhenyu Li, Zixuan Wang, Jiangning Song, Guangyu Wang, Ting Chen1/6/2025

arXiv:2501.01477v1 Announce Type: cross Abstract: Proteins are sequences of amino acids that serve as the basic building blocks of living organisms. Despite rapidly growing databases documenting structural and functional information for various protein sequences, our understanding of proteins remains limited because of the large possible sequence space and the complex inter- and intra-molecular forces. Deep learning, which is characterized by its ability to learn relevant features directly from large datasets, has demonstrated remarkable performance in fields such as computer vision and natural language processing. It has also been increasingly applied in recent years to the data-rich domain of protein sequences with great success, most notably with Alphafold2's breakout performance in the protein structure prediction. The performance improvements achieved by deep learning unlocks new possibilities in the field of protein bioinformatics, including protein design, one of the most difficult but useful tasks. In this paper, we broadly categorize problems in protein bioinformatics into three main categories: 1) structural prediction, 2) functional prediction, and 3) protein design, and review the progress achieved from using deep learning methodologies in each of them. We expand on the main challenges of the protein design problem and highlight how advances in structural and functional prediction have directly contributed to design tasks. Finally, we conclude by identifying important topics and future research directions.

Weihang Dai1/6/2025

arXiv:2207.01586v3 Announce Type: replace-cross Abstract: Accurate prediction of RNA three-dimensional (3D) structure remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to scarcity of experimentally determined data, complicates computational prediction efforts. Here, we present RhoFold+, an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences. By integrating an RNA language model pre-trained on ~23.7 million RNA sequences and leveraging techniques to address data scarcity, RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction. Retrospective evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate RhoFold+'s superiority over existing methods, including human expert groups. Its efficacy and generalizability are further validated through cross-family and cross-type assessments, as well as time-censored benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and inter-helical angles, providing empirically verifiable features that broaden its applicability to RNA structure and function studies.

Tao Shen, Zhihang Hu, Siqi Sun, Di Liu, Felix Wong, Jiuming Wang, Jiayang Chen, Yixuan Wang, Liang Hong, Jin Xiao, Liangzhen Zheng, Tejas Krishnamoorthi, Irwin King, Sheng Wang, Peng Yin, James J. Collins, Yu Li1/3/2025

arXiv:2412.17217v1 Announce Type: cross Abstract: The dramatic increase in consumption of ultra-processed food has been associated with numerous adverse health effects. Given the public health consequences linked to ultra-processed food consumption, it is highly relevant to build computational models to predict the processing of food products. We created a range of machine learning, deep learning, and NLP models to predict the extent of food processing by integrating the FNDDS dataset of food products and their nutrient profiles with their reported NOVA processing level. Starting with the full nutritional panel of 102 features, we further implemented coarse-graining of features to 65 and 13 nutrients by dropping flavonoids and then by considering the 13-nutrient panel of FDA, respectively. LGBM Classifier and Random Forest emerged as the best model for 102 and 65 nutrients, respectively, with an F1-score of 0.9411 and 0.9345 and MCC of 0.8691 and 0.8543. For the 13-nutrient panel, Gradient Boost achieved the best F1-score of 0.9284 and MCC of 0.8425. We also implemented NLP based models, which exhibited state-of-the-art performance. Besides distilling nutrients critical for model performance, we present a user-friendly web server for predicting processing level based on the nutrient panel of a food product: https://cosylab.iiitd.edu.in/food-processing/.

Nalin Arora, Sumit Bhagat, Riya Dhama, Ganesh Bagler12/24/2024

arXiv:2412.17780v1 Announce Type: cross Abstract: Peptide therapeutics, a major class of medicines, have achieved remarkable success across diseases such as diabetes and cancer, with landmark examples such as GLP-1 receptor agonists revolutionizing the treatment of type-2 diabetes and obesity. Despite their success, designing peptides that satisfy multiple conflicting objectives, such as target binding affinity, solubility, and membrane permeability, remains a major challenge. Classical drug development and structure-based design are ineffective for such tasks, as they fail to optimize global functional properties critical for therapeutic efficacy. Existing generative frameworks are largely limited to continuous spaces, unconditioned outputs, or single-objective guidance, making them unsuitable for discrete sequence optimization across multiple properties. To address this, we present PepTune, a multi-objective discrete diffusion model for the simultaneous generation and optimization of therapeutic peptide SMILES. Built on the Masked Discrete Language Model (MDLM) framework, PepTune ensures valid peptide structures with state-dependent masking schedules and penalty-based objectives. To guide the diffusion process, we propose a Monte Carlo Tree Search (MCTS)-based strategy that balances exploration and exploitation to iteratively refine Pareto-optimal sequences. MCTS integrates classifier-based rewards with search-tree expansion, overcoming gradient estimation challenges and data sparsity inherent to discrete spaces. Using PepTune, we generate diverse, chemically-modified peptides optimized for multiple therapeutic properties, including target binding affinity, membrane permeability, solubility, hemolysis, and non-fouling characteristics on various disease-relevant targets. In total, our results demonstrate that MCTS-guided discrete diffusion is a powerful and modular approach for multi-objective sequence design in discrete state spaces.

Sophia Tang, Yinuo Zhang, Pranam Chatterjee12/24/2024

arXiv:2405.06659v2 Announce Type: replace-cross Abstract: Due to the vast design space of molecules, generating molecules conditioned on a specific sub-structure relevant to a particular function or therapeutic target is a crucial task in computer-aided drug design. Existing works mainly focus on specific tasks, such as linker design or scaffold hopping, each task requires training a model from scratch, and many well-pretrained De Novo molecule generation model parameters are not effectively utilized. To this end, we propose a two-stage training approach, consisting of condition learning and condition optimization. In the condition learning stage, we adopt the idea of ControlNet and design some meaningful adjustments to make the unconditional generative model learn sub-structure conditioned generation. In the condition optimization stage, by using human preference learning, we further enhance the stability and robustness of sub-structure control. In our experiments, only trained on randomly partitioned sub-structure data, the proposed method outperforms previous techniques by generating more valid and diverse molecules. Our method is easy to implement and can be quickly applied to various pre-trained molecule generation models.

Qi Zhengyang, Liu Zijing, Zhang Jiying, Cao He, Li Yu12/24/2024

arXiv:2408.16975v3 Announce Type: replace-cross Abstract: The AlphaFold series has transformed protein structure prediction with remarkable accuracy, often matching experimental methods. AlphaFold2, AlphaFold-Multimer, and the latest AlphaFold3 represent significant strides in predicting single protein chains, protein complexes, and biomolecular structures. While AlphaFold2 and AlphaFold-Multimer are open-sourced, facilitating rapid and reliable predictions, AlphaFold3 remains partially accessible through a limited online server and has not been open-sourced, restricting further development. To address these challenges, the PaddleHelix team is developing HelixFold3, aiming to replicate AlphaFold3's capabilities. Leveraging insights from previous models and extensive datasets, HelixFold3 achieves accuracy comparable to AlphaFold3 in predicting the structures of the conventional ligands, nucleic acids, and proteins. The initial release of HelixFold3 is available as open source on GitHub for academic research, promising to advance biomolecular research and accelerate discoveries. The latest version will be continuously updated on the HelixFold3 web server, providing both interactive visualization and API access.

Lihang Liu, Shanzhuo Zhang, Yang Xue, Xianbin Ye, Kunrui Zhu, Yuxin Li, Yang Liu, Jie Gao, Wenlai Zhao, Hongkun Yu, Zhihua Wu, Xiaonan Zhang, Xiaomin Fang12/24/2024

arXiv:2412.16483v1 Announce Type: new Abstract: Molecular representation learning plays a crucial role in various downstream tasks, such as molecular property prediction and drug design. To accurately represent molecules, Graph Neural Networks (GNNs) and Graph Transformers (GTs) have shown potential in the realm of self-supervised pretraining. However, existing approaches often overlook the relationship between molecular structure and electronic information, as well as the internal semantic reasoning within molecules. This omission of fundamental chemical knowledge in graph semantics leads to incomplete molecular representations, missing the integration of structural and electronic data. To address these issues, we introduce MOL-Mamba, a framework that enhances molecular representation by combining structural and electronic insights. MOL-Mamba consists of an Atom & Fragment Mamba-Graph (MG) for hierarchical structural reasoning and a Mamba-Transformer (MT) fuser for integrating molecular structure and electronic correlation learning. Additionally, we propose a Structural Distribution Collaborative Training and E-semantic Fusion Training framework to further enhance molecular representation learning. Extensive experiments demonstrate that MOL-Mamba outperforms state-of-the-art baselines across eleven chemical-biological molecular datasets. Code is available at https://github.com/xian-sh/MOL-Mamba.

Jingjing Hu, Dan Guo, Zhan Si, Deguang Liu, Yunfeng Diao, Jing Zhang, Jinxing Zhou, Meng Wang12/24/2024

arXiv:2412.16664v1 Announce Type: new Abstract: Air pollution, particularly airborne particulate matter (PM), poses a significant threat to public health globally. It is crucial to comprehend the association between PM-associated toxic components and their cellular targets in humans to understand the mechanisms by which air pollution impacts health and to establish causal relationships between air pollution and public health consequences. Although many studies have explored the impact of PM on human health, the understanding of the association between toxins and the associated targets remain limited. Leveraging cutting-edge deep learning technologies, we developed tipFormer (toxin-protein interaction prediction based on transformer), a novel deep-learning tool for identifying toxic components capable of penetrating human cells and instigating pathogenic biological activities and signaling cascades. Experimental results show that tipFormer effectively captures interactions between proteins and toxic components. It incorporates dual pre-trained language models to encode protein sequences and chemicals. It employs a convolutional encoder to assimilate the sequential attributes of proteins and chemicals. It then introduces a learning module with a cross-attention mechanism to decode and elucidate the multifaceted interactions pivotal for the hotspots binding proteins and chemicals. Experimental results show that tipFormer effectively captures interactions between proteins and toxic components. This approach offers significant value to air quality and toxicology researchers by allowing high-throughput identification and prioritization of hazards. It supports more targeted laboratory studies and field measurements, ultimately enhancing our understanding of how air pollution impacts human health.

Yan Zhu, Shihao Wang, Yong Han, Yao Lu, Shulan Qiu, Ling Jin, Xiangdong Li, Weixiong Zhang12/24/2024