gr-qc
3 postsarXiv:2501.10486v1 Announce Type: cross Abstract: We introduce a technique to enhance the reliability of gravitational wave parameter estimation results produced by machine learning. We develop two independent machine learning models based on the Vision Transformer to estimate effective spin and chirp mass from spectrograms of gravitational wave signals from binary black hole mergers. To enhance the reliability of these models, we utilize attention maps to visualize the areas our models focus on when making predictions. This approach enables demonstrating that both models perform parameter estimation based on physically meaningful information. Furthermore, by leveraging these attention maps, we demonstrate a method to quantify the impact of glitches on parameter estimation. We show that as the models focus more on glitches, the parameter estimation results become more strongly biased. This suggests that attention maps could potentially be used to distinguish between cases where the results produced by the machine learning model are reliable and cases where they are not.
arXiv:2412.13973v2 Announce Type: replace-cross Abstract: Here we explore certain subtle features imprinted in data from the completed Sloan Digital Sky Survey IV (SDSS-IV) extended Baryon Oscillation Spectroscopic Survey (eBOSS) as a combined probe for the background and perturbed Universe. We reconstruct the baryon Acoustic Oscillation (BAO) and Redshift Space Distortion (RSD) observables as functions of redshift, using measurements from SDSS alone. We apply the Multi-Task Gaussian Process (MTGP) framework to model the interdependencies of cosmological observables $D_M(z)/r_d$, $D_H(z)/r_d$, and $f\sigma_8(z)$, and track their evolution across different redshifts. Subsequently, we obtain constrained three-dimensional phase space containing $D_M(z)/r_d$, $D_H(z)/r_d$, and $f\sigma_8(z)$ at different redshifts probed by the SDSS-IV eBOSS survey. Furthermore, assuming the $\Lambda$CDM model, we obtain constraints on model parameters $\Omega_{m}$, $H_{0}r_{d}$, $\sigma_{8}$ and $S_{8}$ at each redshift probed by SDSS-IV eBOSS. This indicates redshift-dependent trends in $H_0$, $\Omega_m$, $\sigma_8$ and $S_8$ in the $\Lambda$CDM model, suggesting a possible inconsistency in the $\Lambda$CDM model. Ours is a template for model-independent extraction of information for both background and perturbed Universe using a single galaxy survey taking into account all the existing correlations between background and perturbed observables and this can be easily extended to future DESI-3YR as well as Euclid results.
arXiv:2501.00093v1 Announce Type: cross Abstract: Constructing the landscape of vacua of higher-dimensional theories of gravity by directly solving the low-energy (semi-)classical equations of motion is notoriously difficult. In this work, we investigate the feasibility of Machine Learning techniques as tools for solving the equations of motion for general warped gravity compactifications. As a proof-of-concept we use Neural Networks to solve the Einstein PDEs on non-trivial three manifolds obtained by filling one or more cusps of hyperbolic manifolds. While in three dimensions an Einstein metric is also locally hyperbolic, the generality and scalability of Machine Learning methods, the availability of explicit families of hyperbolic manifolds in higher dimensions, and the universality of the filling procedure strongly suggest that the methods and code developed in this work can be of broader applicability. Specifically, they can be used to tackle both the geometric problem of numerically constructing novel higher-dimensional negatively curved Einstein metrics, as well as the physical problem of constructing four-dimensional de Sitter compactifications of M-theory on the same manifolds.