astro-ph.HE

2 posts

arXiv:2501.01496v1 Announce Type: cross Abstract: We present ORACLE, the first hierarchical deep-learning model for real-time, context-aware classification of transient and variable astrophysical phenomena. ORACLE is a recurrent neural network with Gated Recurrent Units (GRUs), and has been trained using a custom hierarchical cross-entropy loss function to provide high-confidence classifications along an observationally-driven taxonomy with as little as a single photometric observation. Contextual information for each object, including host galaxy photometric redshift, offset, ellipticity and brightness, is concatenated to the light curve embedding and used to make a final prediction. Training on $\sim$0.5M events from the Extended LSST Astronomical Time-Series Classification Challenge, we achieve a top-level (Transient vs Variable) macro-averaged precision of 0.96 using only 1 day of photometric observations after the first detection in addition to contextual information, for each event; this increases to $>$0.99 once 64 days of the light curve has been obtained, and 0.83 at 1024 days after first detection for 19-way classification (including supernova sub-types, active galactic nuclei, variable stars, microlensing events, and kilonovae). We also compare ORACLE with other state-of-the-art classifiers and report comparable performance for the 19-way classification task, in addition to delivering accurate top-level classifications much earlier. The code and model weights used in this work are publicly available at our associated GitHub repository (https://github.com/uiucsn/ELAsTiCC-Classification).

Ved G. Shah, Alex Gagliano, Konstantin Malanchev, Gautham Narayan, The LSST Dark Energy Science Collaboration1/6/2025

arXiv:2403.14742v2 Announce Type: replace-cross Abstract: Automating real-time anomaly detection is essential for identifying rare transients, with modern survey telescopes generating tens of thousands of alerts per night, and future telescopes, such as the Vera C. Rubin Observatory, projected to increase this number dramatically. Currently, most anomaly detection algorithms for astronomical transients rely either on hand-crafted features extracted from light curves or on features generated through unsupervised representation learning, coupled with standard anomaly detection algorithms. In this work, we introduce an alternative approach: using the penultimate layer of a neural network classifier as the latent space for anomaly detection. We then propose a novel method, Multi-Class Isolation Forests (\texttt{MCIF}), which trains separate isolation forests for each class to derive an anomaly score for a light curve from its latent space representation. This approach significantly outperforms a standard isolation forest. We also use a simpler input method for real-time transient classifiers which circumvents the need for interpolation and helps the neural network handle irregular sampling and model inter-passband relationships. Our anomaly detection pipeline identifies rare classes including kilonovae, pair-instability supernovae, and intermediate luminosity transients shortly after trigger on simulated Zwicky Transient Facility light curves. Using a sample of our simulations matching the population of anomalies expected in nature (54 anomalies and 12,040 common transients), our method discovered $41\pm3$ anomalies (~75% recall) after following up the top 2000 (~15%) ranked transients. Our novel method shows that classifiers can be effectively repurposed for real-time anomaly detection.

Rithwik Gupta, Daniel Muthukrishna, Michelle Lochner1/3/2025