Data-Streams
2 postsAuthors: Bingfeng Xia and Xinyu Liu Background At LinkedIn, Apache Beam plays a pivotal role in stream processing infrastructures that process over 4 trillion events daily through more than 3,000 pipelines across multiple production data centers. This robust framework empowers near real-time data processing for critical services and platforms, ranging from machine learning and notifications to anti-abuse AI modeling. With over 950 million members, ensuring that our platform is running smoothly is critical to connecting members to opportunities worldwide. In this case study, […]
For the last several years, internal infrastructure at LinkedIn has been built around a self-service model, enabling developers to onboard themselves with minimal support. We have various user experiences that let application teams provision their own resources and infrastructure, generally by filling out forms or using command-line tools. For example, developers can provision Kafka topics, Espresso tables, Venice stores and more via Nuage, our internal cloud-like infra management platform. These self-service integrations are typically owned by the teams that build and support the […]